Skip to main content

A Steepest Descent Evolution Immune Algorithm for Multimodal Function Optimization

  • Conference paper
Advances in Computation and Intelligence (ISICA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4683))

Included in the following conference series:

  • 1513 Accesses

Abstract

This paper presents an novel evolution and immune hybrid algorithm for multimodal function optimization. The algorithm constructs a multi-dimensional shape-space based on immune theory and approaches optima by steepest descent evolution strategy along each dimension, adjusts steps adaptively based on fitness in each iteration, as a result, gets steepest and surefooted ability approaching the optima. By suppressing close individuals in immune shape-space within a restraint radius and supplying new individuals to exploit new searching space, the algorithm obtains very good diversity. Experiments for multimodal functions show that the algorithm achieved global searching effect, obtained all the optima in shorter iterations and with lesser size of population compared with the GA, CSA and op-aiNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies. Natural Computing 1, 3–52 (2002)

    Article  MATH  Google Scholar 

  2. Fukuda, T., Mcri, K., Tsukiama, M.: Parallel Search for Multi-Modal Function Optimization with Diversity and Learning of Immune Algorithm. In: Dasgupta, D. (ed.) Artificial Immune Systems and Their Applications, pp. 210–220. Springer, Heidelberg (1999)

    Google Scholar 

  3. de Castro, L.N., Von Zuben, F.J.: The Clonal Selection Algorithm with Engineering Applications. In: Workshop Proceedings of GECCO, USA. Artificial Immune Systems and Their Applications, vol. 7, pp. 36–37 (2000)

    Google Scholar 

  4. de Castro, L.N., Von Zuben, F.J.: Artificial Immune Systems: part I - Basic theory and applications. Technical Report, vol. 12 (1999)

    Google Scholar 

  5. De Castro, F.J.: An Evolution Immune Network for Data Clustering. Proc. Of the IEEE 11, 84–89 (2000)

    Google Scholar 

  6. de Castro, L.N., Timmis, J.: An Artificial Immune Network for Multimodal Function Optimization. In: IEEE 2002, pp. 699–704. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  7. Tang, T., Qiu, J.: An Improved Multimodal Artificial Immune Algorithm and its Convergence Analysis. In: Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, vol. 6, pp. 3335–3339. IEEE, Los Alamitos (2006)

    Chapter  Google Scholar 

  8. Coello Coello, C.A.: Solving Multiobjective Optimization Problems Using an Artificial Immune System. Genetic Programming and Evolvable Machines 6, 163–190 (2005)

    Article  Google Scholar 

  9. Power, D., Ryan, C., Azad, R.M.A.: Promoting diversity using migration strategies in distributed genetic algorithms. IEEE Transaction on Evolutionary Computation 5, 1831–1838 (2005)

    Google Scholar 

  10. Im, C.-H., Kim, H.-K., Jung, H.-K., Choi, K.: A novel algorithm for multimodal function optimization based on evolution strategy. IEEE Transaction Magnetics 40(2), 1224–1227 (2004)

    Article  Google Scholar 

  11. Yao, J., Kharma, N., Grogono, P.: BMPGA: A Bi-Objective Multi-population Genetic Algorithm for Multi-modal Function Optimization. In: IEEE2005, pp. 816–823. IEEE, Los Alamitos (2005)

    Google Scholar 

  12. Singh, G., Deb, K.: Comparison of Multi-Modal Optimization Algorithms Based on Evolutionary Algorithms. In: GECCO 2006. Proceedings of the 8th annual conference on Genetic and evolutionary computation, Washington, USA, vol. 7, pp. 1305–1312 (2006)

    Google Scholar 

  13. Corns, S.M., Ashlock, D.A., McCorkle, D.S., Bryden, K.M.: Improving Design Diversity Using Graph Based Evolutionary Algorithms. In: Congress on Evolutionary Computation, Vancouver, BC, Canada, vol. 7, pp. 333–339. IEEE, Los Alamitos (2006)

    Chapter  Google Scholar 

  14. Yoshiaki, S., Noriyuki, T., Yukinobu, H., Katsuari, K.: A Fuzzy Clustering Based Selection Method to Maintain Diversity in Genetic Algorithms. In: Congress on Evolutionary Computation, Vancouver, BC, Canada, vol. 7, pp. 3007–3012. IEEE, Los Alamitos (2006)

    Google Scholar 

  15. Narihisa, H., Kohmoto, K., Taniguchi, T., Ohta, M., Katayama, K.: Evolutionary Programming With Only Using Exponential Mutation. In: Congress on Evolutionary Computations, Vancouver, BC, Canada, vol. 7, IEEE, Los Alamitos (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lishan Kang Yong Liu Sanyou Zeng

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhu, L., Li, Z., Sun, B. (2007). A Steepest Descent Evolution Immune Algorithm for Multimodal Function Optimization. In: Kang, L., Liu, Y., Zeng, S. (eds) Advances in Computation and Intelligence. ISICA 2007. Lecture Notes in Computer Science, vol 4683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74581-5_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74581-5_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74580-8

  • Online ISBN: 978-3-540-74581-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics