Abstract
This paper presents a texture image retrieval scheme based on contourlet transform. In this scheme, the generalized Gaussian distribution (GGD) parameters are used to represent the detail subband features obtained by contourlet transform. To obtain these parameters, an improved maximum likelihood (ML) parameter estimation method is proposed, in which a new initial estimation value is exploited and a modified iterative algorithm is used. Compared with existing features used for the texture image retrieval, the use of the GGD parameters to represent the contourlet detail subbands provides richer information to improve the retrieval accuracy. The proposed retrieval scheme is demonstrated on the VisTex database of 640 texture images. Experimental results show that, compared with the current ML estimation and texture retrieval method, the proposed scheme can give more accurate estimates of the GGD parameters, and it improves more effectively the average retrieval rate from 76.05% to 78.09% with comparable computational complexity.
This project is sponsored by SRF for ROCS, SEM (2004.176.4) and NSF SD Province (Z2004G01) of China.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Rui, Y., Huang, T.S.: Image retrieval: Current techniques, promising directions and open issues. J. Vis. Commun. Image Represent 10, 39–62 (1999)
Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)
Rao, A.R., Lohse, G.L.: Towards a texture naming system: identifying relevant dimensions of texture. In: Proc. IEEE Conf. Visualization, San Jose, Calif, 25-29 October, pp. 220–227. IEEE Computer Society Press, Los Alamitos (1993)
Randen, T., Husoy, J.H.: Filtering for texture classification: A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(4), 291–310 (1999)
Varanasi, M.K., Aazhang, B.: Parametric generalized Gaussian density estimation. J. Acoust. Soc. Amer. 86(4), 1404–1415 (1989)
Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Transactions on Image processing 11(2), 146–158 (2002)
Song, K.-S.: A globally convergent and consistent method for estimating the shape parameter of a generalized Gaussian distribution. IEEE Transactions on Information Theory 52(2), 510–527 (2006)
Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Transactions on Image Processing 14(12), 2091–2106 (2005)
Do, M.N.: Contoulets and sparse image expansions. In: Unser, M.A., Aldroubi, A., Laine, A.F. (eds.) Proceedings of SPIE, Applications in Signal and Image Processing X, vol. 5207, pp. 560–570 (November 2003)
Aiazzi, B., Alparone, L., Baronti, S.: Estimation based on entropy matching for generalized Gaussian pdf modeling. IEEE Signal Processing Letters 6(6), 138–140 (1999)
Meignen, S., Meignen, H.: On the modeling of small sample distributions with generalized Gaussian density in a maximum likelihood framework. IEEE Transactions on Image Processing 15(6), 1647–1652 (2006)
Krupinski, R., Purczynski, J.: Approximated fast estimator for the shape parameter of generalized Gaussian distribution. Signal Processing 86(2), 205–211 (2006)
Liu, X., Wang, D.: Texture classification using spectral histograms. IEEE Transactions on Image Processing 12(6), 661–670 (2003)
Phoong, S.-M., Kim, C.W., Vaidyanathan, P.P., Ansari, R.: A new class of two-channel biorthogonal filter banks and wavelet bases. IEEE Transactions on Signal Processing 43(3), 649–665 (1995)
MIT Vision and Modeling Group. Vision Texture, [Online]. Available: http://vismod.www.medis.mit.edu
Vetterli, M., Herley, C.: Wavelet and filter banks: theory and design. IEEE Transactions on Signal Processing 40(9), 2207–2232 (1992)
Daubechies, I.: Ten lectures on wavelet. SIAM, Philadelphia, PA (1992)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Qu, H., Peng, Y., Sun, W. (2007). Texture Image Retrieval Based on Contourlet Coefficient Modeling with Generalized Gaussian Distribution. In: Kang, L., Liu, Y., Zeng, S. (eds) Advances in Computation and Intelligence. ISICA 2007. Lecture Notes in Computer Science, vol 4683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74581-5_54
Download citation
DOI: https://doi.org/10.1007/978-3-540-74581-5_54
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74580-8
Online ISBN: 978-3-540-74581-5
eBook Packages: Computer ScienceComputer Science (R0)