Skip to main content

Texture Image Retrieval Based on Contourlet Coefficient Modeling with Generalized Gaussian Distribution

  • Conference paper
Advances in Computation and Intelligence (ISICA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4683))

Included in the following conference series:

  • 1525 Accesses

Abstract

This paper presents a texture image retrieval scheme based on contourlet transform. In this scheme, the generalized Gaussian distribution (GGD) parameters are used to represent the detail subband features obtained by contourlet transform. To obtain these parameters, an improved maximum likelihood (ML) parameter estimation method is proposed, in which a new initial estimation value is exploited and a modified iterative algorithm is used. Compared with existing features used for the texture image retrieval, the use of the GGD parameters to represent the contourlet detail subbands provides richer information to improve the retrieval accuracy. The proposed retrieval scheme is demonstrated on the VisTex database of 640 texture images. Experimental results show that, compared with the current ML estimation and texture retrieval method, the proposed scheme can give more accurate estimates of the GGD parameters, and it improves more effectively the average retrieval rate from 76.05% to 78.09% with comparable computational complexity.

This project is sponsored by SRF for ROCS, SEM (2004.176.4) and NSF SD Province (Z2004G01) of China.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rui, Y., Huang, T.S.: Image retrieval: Current techniques, promising directions and open issues. J. Vis. Commun. Image Represent 10, 39–62 (1999)

    Article  Google Scholar 

  2. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  3. Rao, A.R., Lohse, G.L.: Towards a texture naming system: identifying relevant dimensions of texture. In: Proc. IEEE Conf. Visualization, San Jose, Calif, 25-29 October, pp. 220–227. IEEE Computer Society Press, Los Alamitos (1993)

    Google Scholar 

  4. Randen, T., Husoy, J.H.: Filtering for texture classification: A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(4), 291–310 (1999)

    Article  Google Scholar 

  5. Varanasi, M.K., Aazhang, B.: Parametric generalized Gaussian density estimation. J. Acoust. Soc. Amer. 86(4), 1404–1415 (1989)

    Article  Google Scholar 

  6. Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Transactions on Image processing 11(2), 146–158 (2002)

    Article  Google Scholar 

  7. Song, K.-S.: A globally convergent and consistent method for estimating the shape parameter of a generalized Gaussian distribution. IEEE Transactions on Information Theory 52(2), 510–527 (2006)

    Article  Google Scholar 

  8. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Transactions on Image Processing 14(12), 2091–2106 (2005)

    Article  Google Scholar 

  9. Do, M.N.: Contoulets and sparse image expansions. In: Unser, M.A., Aldroubi, A., Laine, A.F. (eds.) Proceedings of SPIE, Applications in Signal and Image Processing X, vol. 5207, pp. 560–570 (November 2003)

    Google Scholar 

  10. Aiazzi, B., Alparone, L., Baronti, S.: Estimation based on entropy matching for generalized Gaussian pdf modeling. IEEE Signal Processing Letters 6(6), 138–140 (1999)

    Article  Google Scholar 

  11. Meignen, S., Meignen, H.: On the modeling of small sample distributions with generalized Gaussian density in a maximum likelihood framework. IEEE Transactions on Image Processing 15(6), 1647–1652 (2006)

    Article  Google Scholar 

  12. Krupinski, R., Purczynski, J.: Approximated fast estimator for the shape parameter of generalized Gaussian distribution. Signal Processing 86(2), 205–211 (2006)

    Article  Google Scholar 

  13. Liu, X., Wang, D.: Texture classification using spectral histograms. IEEE Transactions on Image Processing 12(6), 661–670 (2003)

    Article  Google Scholar 

  14. Phoong, S.-M., Kim, C.W., Vaidyanathan, P.P., Ansari, R.: A new class of two-channel biorthogonal filter banks and wavelet bases. IEEE Transactions on Signal Processing 43(3), 649–665 (1995)

    Article  Google Scholar 

  15. MIT Vision and Modeling Group. Vision Texture, [Online]. Available: http://vismod.www.medis.mit.edu

  16. Vetterli, M., Herley, C.: Wavelet and filter banks: theory and design. IEEE Transactions on Signal Processing 40(9), 2207–2232 (1992)

    Article  MATH  Google Scholar 

  17. Daubechies, I.: Ten lectures on wavelet. SIAM, Philadelphia, PA (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lishan Kang Yong Liu Sanyou Zeng

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qu, H., Peng, Y., Sun, W. (2007). Texture Image Retrieval Based on Contourlet Coefficient Modeling with Generalized Gaussian Distribution. In: Kang, L., Liu, Y., Zeng, S. (eds) Advances in Computation and Intelligence. ISICA 2007. Lecture Notes in Computer Science, vol 4683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74581-5_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74581-5_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74580-8

  • Online ISBN: 978-3-540-74581-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics