Skip to main content

Noise Removal from Images by Projecting onto Bases of Principal Components

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4678))

Abstract

In this paper, we develop a new wavelet domain statistical model for the removal of stationary noise in images. The new model is a combination of local linear projections onto bases of Principal Components, that perform a dimension reduction of the spatial neighbourhood, while avoiding the ”curse of dimensionality”. The models obtained after projection consist of a low dimensional Gaussian Scale Mixtures with a reduced number of parameters. The results show that this technique yields a significant improvement in denoising performance when using larger spatial windows, especially on images with highly structured patterns, like textures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Donoho, D.L.: De-Noising by Soft-Thresholding. IEEE Trans. Inform. Theory 41, 613–627 (1995)

    Article  MATH  Google Scholar 

  2. Crouse, M., Nowak, R., Baraniuk, R.: Wavelet-based statistical signal processing using Hidden Markov Models. IEEE. Trans. Signal Processing 46, 886–902 (1998)

    Article  Google Scholar 

  3. Mihçak, M.K.: Low-complexity Image Denoising based on Statistical Modeling of Wavelet Coefficients. IEEE Signal Processing Letters 6(12), 300–303 (1999)

    Article  Google Scholar 

  4. Chang, S., Yu, B., Vetterli, M.: Spatially Adaptive Wavelet Thresholding with Context Modeling for Image Denoising. IEEE Trans. Image Process. 9, 1522–1531 (2000)

    Article  MATH  Google Scholar 

  5. Liu, J., Moulin, P.: Complexity-Regularized Image Denoising. IEEE Trans. on Image Processing 10(6), 841–851 (2001)

    Article  MATH  Google Scholar 

  6. Fan, G., Xia, X.: Image denoising using local contextual hidden Markov model in the wavelet domain. IEEE Signal Processing Letters 8(5), 125–128 (2001)

    Article  Google Scholar 

  7. Pižurica, A., Philips, W., Lemahieu, I., Acheroy, M.: A joint inter- and intrascale statistical model for Bayesian wavelet based image denoising. IEEE Trans. Image Processing 11(5), 545–557 (2002)

    Article  Google Scholar 

  8. Şendur, L., Selesnick, I.: Bivariate Shrinkage with Local Variance Estimation. IEEE Signal Processing Letters 9, 438–441 (2002)

    Article  Google Scholar 

  9. Portilla, J., Strela, V., Wainwright, M., Simoncelli, E.: Image denoising using Gaussian Scale Mixtures in the Wavelet Domain. IEEE Trans. Image Processing 12, 1338–1351 (2003)

    Article  Google Scholar 

  10. Pižurica, A., Philips, W.: Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising. IEEE Trans. Image Process 15(3), 654–665 (2006)

    Article  Google Scholar 

  11. Portilla, J.: Full Blind Denoising through Noise Covariance Estimation using Gaussian Scale Mixtures in the Wavelet Domain. In: Proc. Int. Conf. on Image Processing (ICIP), vol. 2, pp. 1217–1220 (2004)

    Google Scholar 

  12. Bellman, R.E.: Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton, NJ (1961)

    MATH  Google Scholar 

  13. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  14. Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach toward Feature Space Analysis. IEEE Trans. Pattern Analysis Machine Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  15. Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (1986)

    Google Scholar 

  16. Muresan, D.D., Parks, T.W.: Adaptive Principal Components and Image Denoising. In: Proc. Int. Conf. on Image Processing (ICIP) (2003)

    Google Scholar 

  17. Goossens, B., Pižurica, A., Philips, W.: Noise Reduction of Images with Correlated Noise in the Complex Wavelet Domain. In: IEEE BENELUX/DSP Valley Signal Processing Symposium SPS-DARTS, Antwerp, IEEE, Los Alamitos (2007)

    Google Scholar 

  18. Wainwright, M.J., Simoncelli, E.P., Willsky, A.S: Random Cascades on Wavelet Trees and their use in modeling and analyzing natural images. Applied Computational and Harmonic Analysis 11(1), 89–123 (2001)

    Article  MATH  Google Scholar 

  19. Selesnick, I.W.: Laplace Random Vectors, Gaussian Noise, and the Generalized Incomplete Gamma Function. In: Proc. Int. Conf. on Image Processing (ICIP), pp. 2097–2100 (2006)

    Google Scholar 

  20. Srivastava, A., Liu, X., Grenander, U.: Universal Analytical Forms for Modeling Image Probabilities. IEEE Trans. Pattern Analysis and Machine Intelligence 24(9), 1200–1214 (2002)

    Article  Google Scholar 

  21. Tipping, M.E., Bishop, C.M.: Mixtures of Probabilistic Principal Component Analysers. Neural Computation 11(2), 443–482 (1999)

    Article  Google Scholar 

  22. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 19(1), 1–38 (1977)

    Google Scholar 

  23. Kingsbury, N.G.: Complex Wavelets for Shift Invariant Analysis and Filtering of Signals. Journal of Applied and Computational Harmonic Analysis 10(3), 234–253 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Blanc-Talon Wilfried Philips Dan Popescu Paul Scheunders

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goossens, B., Pižurica, A., Philips, W. (2007). Noise Removal from Images by Projecting onto Bases of Principal Components. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2007. Lecture Notes in Computer Science, vol 4678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74607-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74607-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74606-5

  • Online ISBN: 978-3-540-74607-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics