Abstract
Answer set Prolog, or AnsProlog in short, is one of the leading knowledge representation (KR) languages with a large body of theoretical and building block results, several implementations and reasoning and declarative problem solving applications. But it shares the problem associated with knowledge acquisition with all other KR languages; most knowledge is entered manually by people and that is a bottleneck. Recent advances in natural language processing have led to some systems that convert natural language sentences to a logical form. Although these systems are in their infancy, they suggest a direction to overcome the above mentioned knowledge acquisition bottleneck. In this paper we discuss some recent work by us on developing applications that process logical forms of natural language text and use the processed result together with AnsProlog rules to do reasoning and problem solving.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baral, C.: Knowledge representation, reasoning and declarative problem solving. Cambridge University Press, Cambridge (2003)
Bos, J., Clark, S., Steedman, M., Curran, J.R., Hockenmaier, J.: Wide-coverage semantic representations from a ccg parser. In: Proceedings of the 20th International Conference on Computational Linguistics (COLING 2004), Geneva, Switzerland (2004)
Baral, C., Dzifcak, J., Takahashi, H.: Macros, macro calls and use of ensembles in modular answer set programming. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 376–390. Springer, Heidelberg (2006)
Baral, C., Gelfond, M.: Reasoning about intended actions. In: Proceedings of AAAI 2005, pp. 689–694 (2005)
Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. In: Lifschitz, V., Niemelä, I. (eds.) Logic Programming and Nonmonotonic Reasoning. LNCS (LNAI), vol. 2923, pp. 21–33. Springer, Heidelberg (2003)
Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, D., Magnini, B., Szpektor, I.: The second pascal recognising textual entailment challenge. In: Proceedings of the Second PASCAL Challenges Workshop on Recognising Textual Entailment, Springer, Heidelberg (2006)
England’s best logic problems. Penny Press (Spring, 2007)
Clark, S., Curran, J.R.: Wide-coverage efficient statistical parsing with ccg and log-linear models. Computational Linguistics (to appear, 2007)
Dagan, I., Glickman, O., Magnini, B.: The pascal recognising textual entailment challenge. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 177–190. Springer, Heidelberg (2006)
de Vos M., Schaub, T., Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483. Springer, Heidelberg (2007)
Friedland, N., Allen, P., Witbrock, M., Angele, J., Staab, S., Israel, D., Chaudhri, V., Porter, B., Barker, K., Clark, P.: Towards a quantitative, platformindependent analysis of knowledge systems. In: Proceedings of the Ninth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2004), pp. 507–515 (2004)
Finkel, R., Marek, M., Truszczyn’ski, M.: Constraint lingo: towards high-level constraint programming. Software—Practice & Experience 34(15), 1481–1504 (2004)
Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Clasp: A conflict-driven answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Logic Programming: Proc. of the Fifth Int’l Conf. and Symp., pp. 1070–1080. MIT Press, Cambridge (1988)
Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–387 (1991)
Lierler, Y.: Cmodels - sat-based disjunctive answer set solver. In: LPNMR, pp. 447–451 (2005)
Lin, F., Zhao, Y.: Assat: Computing answer sets of a logic program by sat solvers. In: Proceedings of AAAI 2002 (2002)
Miller, G., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.: Introduction to wordnet: An on-line lexical database. International Journal of Lexicography (special issue) 3(4), 235–312 (1990)
Moldovan, D., Harabagiu, S., Girju, R., Morarescu, P., Novischi, A., Lacatusu, F., Badulescu, A., Bolohan, O.: Lcc tools for question answering. In: Voorhees, E., Buckland, L., (eds) Proceedings of TREC 2002 (2002)
Moldovan, D., Pasca, M., Harabagiu, S., Surdeanu, M.: Performance issues and error analysis in an open-domain question answering system. ACM Transaction on Information Systems 21(2), 133–154 (2003)
Niemalä, I., Simons, P.: Smodels - an implementation of the stable model and well-founded semantics for normal logic programs. In: proceedings of the 4th International Conference of Logic Programming and Nonmonotonic Reasoning, pp. 420–429 (1997)
Wood, M.M.: Categorial grammars. Routledge (1993)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baral, C., Dzifcak, J., Tari, L. (2007). Towards Overcoming the Knowledge Acquisition Bottleneck in Answer Set Prolog Applications: Embracing Natural Language Inputs. In: Dahl, V., Niemelä, I. (eds) Logic Programming. ICLP 2007. Lecture Notes in Computer Science, vol 4670. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74610-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-540-74610-2_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74608-9
Online ISBN: 978-3-540-74610-2
eBook Packages: Computer ScienceComputer Science (R0)