Abstract
This note provides background information and references to the tutorial on recent research developments in logic programming inspired by needs of knowledge representation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andréka, H., Németi, I.: The generalized completeness of Horn predicate logic as a programming language. Acta Cybernetica 4(1), 3–10 (1978/79)
Apt, K., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In: Foundations of deductive databases and logic programming, pp. 89–142. Morgan Kaufmann, San Francisco (1988)
Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)
Baral, C., Gelfond, M.: Logic programming and knowledge representation. Journal of Logic Programming 19/20, 73–148 (1994)
Clark, K.L.: Negation as failure, Logic and data bases, pp. 293–322. Plenum Press, New York, London (1978)
Colmerauer, A., Kanoui, H., Pasero, R., Roussel, P.: Un systeme de communication homme-machine en francais, Tech. report, University of Marseille (1973)
Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer, G.: Aggregate functions in disjunctive logic programming: semantics, complexity, and implementation in DLV. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), pp. 847–852. Morgan Kaufmann, San Francisco (2003)
Denecker, M.: The well-founded semantics is the principle of inductive definition. In: Dix, J., Fariñas del Cerro, L., Furbach, U. (eds.) JELIA 1998. LNCS (LNAI), vol. 1489, pp. 1–16. Springer, Heidelberg (1998)
Denecker, M., Marek, V., Truszczyński, M.: Approximations, stable operators, well-founded fixpoints and applications in nonmonotonic reasoning. In: Logic-Based Artificial Intelligence, pp. 127–144. Kluwer Academic Publishers, Dordrecht (2000)
Denecker, M., Pelov, N., Bruynooghe, M.: Ultimate well-founded and stable semantics for logic programs with aggregates. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp. 212–226. Springer, Heidelberg (2001)
Denecker, M., Ternovska, E.: Inductive situation calculus. In: Proceedings of the 9th International Conference on Principles of Knowledge Representation and Reasoning (KR 2004), pp. 545–553. AAAI Press, Stanford (2004)
Denecker, M., Ternovska, E.: A logic for non-monotone inductive definitions, ACM Transactions on Computational Logic (to appear, 2008)
East, D., Truszczyński, M.: Datalog with constraints. In: Proceedings of the 17th National Conference on Artificial Intelligence (AAAI 2000), pp. 163–168. AAAI Press, Stanford (2000)
East, D., Truszczyński, M.: Predicate-calculus based logics for modeling and solving search problems. ACM Transactions on Computational Logic 7, 38–83 (2006)
Eiter, T., Fink, M.: Uniform equivalence of logic programs under the stable model semantics. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 224–238. Springer, Heidelberg (2003)
Eiter, T., Fink, M., Tompits, H., Woltran, S.: Strong and uniform equivalence in answer-set programming: Characterizations and complexity results for the non-ground case. In: Proceedings of the 20th National Conference on Artificial Intelligence (AAAI 2005), pp. 695–700 (2005)
Eiter, T., Fink, M., Woltran, S.: Semantical characterizations and complexity of equivalences in answer set programming, ACM Transactions on Computational Logic (to appear, 2006)
Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: propositional case. Annals of Mathematics and Artificial Intelligence 15(3-4), 289–323 (1995)
Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer-set programming. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 97–102. Morgan Kaufmann, San Francisco (2005)
Elkabani, I., Pontelli, E., Son, T.C.: Smodels with CLP and its applications: a simple and effective approach to aggregates in ASP. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 73–89. Springer, Heidelberg (2004)
Faber, W., Greco, G., Leone, N.: Magic sets and their application to data integration. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 306–320. Springer, Heidelberg (2004)
Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: semantics and complexity. In: Alferes, J.J., Leite, J.A. (eds.) JELIA 2004. LNCS(LNAI), vol. 3229, pp. 200–212. Springer, Heidelberg (2004)
Fink, M., Pichler, R., Tompits, H., Woltran, S.: Complexity of rule redundancy in non-ground answer-set programming over finite domains. In: Proceedings of the 9th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2007). LNCS (LNAI), vol. 4483, pp. 123–135. Springer, Heidelberg (2007)
Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The first answer set programming system competition. In: Proceedings of the 9th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2007). LNCS (LNAI), vol. 4483, pp. 3–17. Springer, Heidelberg (2007)
Gelfond, M.: Representing knowledge in A-Prolog. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS(LNAI), vol. 2408, pp. 413–451. Springer, Heidelberg (2002)
Gelfond, M., Leone, N.: Logic programming and knowledge representation – the A-prolog perspective. Artificial Intelligence 138, 3–38 (2002)
Gelfond, M., Lifschitz, V.: The stable semantics for logic programs. In: Proceedings of the 5th International Conference on Logic Programming (ICLP 1988), pp. 1070–1080. MIT Press, Cambridge (1988)
Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)
Heyting, A.: Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte der Preussischen Akademie von Wissenschaften. Physikalisch-mathematische Klasse, pp. 42–56 (1930)
Janhunen, T., Oikarinen, E., Tompits, H., Wotran, S.: Modularity aspects of disjunctive stable models. In: Proceedings of the 9th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2007). LNCS(LNAI), vol. 4483, pp. 175–187. Springer, Heidelberg (2007)
Kowalski, R.: Predicate logic as a programming language. In: Proceedings of the Congress of the International Federation for Information Processing (IFIP-1974) (Amsterdam), North Holland, pp. 569–574 (1974)
Kowalski, R.: Logic for problem solving. North Holland, Amsterdam (1979)
Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transactions on Computational Logic 2(4), 526–541 (2001)
Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for logic programs with variables. In: Proceedings of the 9th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2007). LNCS(LNAI), vol. 4483, pp. 188–200. Springer, Heidelberg (2007)
Lifschitz, V., Turner, H.: Splitting a logic program. In: Proceedings of the 11th International Conference on Logic Programming (ICLP 1994), pp. 23–37 (1994)
Lin, F.: Reducing strong equivalence of logic programs to entailment in classical propositional logic. In: Proceedings of the 8th International Conference on Principles of Knowledge Representation and Reasoning (KR 2002), Morgan Kaufmann, San Francisco (2002)
Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. In: Proceedings of the 18th National Conference on Artificial Intelligence (AAAI 2002), pp. 112–117. AAAI Press, Stanford (2002)
Liu, L., Pontelli, E., Son, T.C., Truszczyński, M.: Logic programs with abstract constraint atoms: the role of computations. In: Proceedings of the 23rd International Conference on Logic Programming (ICLP 2007). LNCS, Springer, Heidelberg (2007) (this volume)
Liu, L., Truszczyński, M.: Pbmodels - software to compute stable models by pseudoboolean solvers. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS(LNAI), vol. 3662, pp. 410–415. Springer, Heidelberg (2005)
Liu, L., Truszczyński, M.: Properties of programs with monotone and convex constraints. In: Proceedings of the 20th National Conference on Artificial Intelligence (AAAI 2005), pp. 701–706. AAAI Press, Stanford (2005)
Liu, L., Truszczyński, M.: Properties and applications of programs with monotone and convex constraints. Journal of Artificial Intelligence Research 27, 299–334 (2006)
Marek, V.W., Remmel, J.B.: Set constraints in logic programming. In: Lifschitz, V., Niemelä, I. (eds.) Logic Programming and Nonmonotonic Reasoning. LNCS(LNAI), vol. 2923, pp. 167–179. Springer, Heidelberg (2003)
Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398. Springer, Berlin (1999)
Marek, V.W., Truszczyński, M.: Logic programs with abstract constraint atoms. In: Proceedings of the 19th National Conference on Artificial Intelligence (AAAI 2004), pp. 86–91. AAAI Press, Stanford (2004)
Marek, W., Truszczyński, M.: Autoepistemic logic. Journal of the ACM 38(3), 588–619 (1991)
McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial intelligence, Machine Intelligence 4, pp. 463–502. Edinburgh University Press (1969)
Mitchell, D.G., Ternovska, E.: A framework for representing and solving NP search problems. In: Proceedings of the 20th National Conference on Artificial Intelligence (AAAI 2005), pp. 430–435. AAAI Press, Stanford (2005)
Niemelä, I.: Logic programming with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273 (1999)
Pelov, N.: Semantics of logic programs with aggregates, PhD Thesis. Department of Computer Science, K.U. Leuven, Leuven, Belgium (2004)
Robinson, J.A.: A machine-oriented logic based on resolution principle. Journal of the ACM 12, 23–41 (1965)
Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138, 181–234 (2002)
Son, T., Pontelli, E.: A constructive semantic characterization of aggregates in answer set programming, Theory and Practice of Logic Programming (accepted 2007), available at http://arxiv.org/abs/cs.AI/0601051
Son, T., Pontelli, E., Tu, P.H.: Answer sets for logic programs with arbitrary abstract constraint atoms. In: Proceedings of the 21st National Conference on Artificial Intelligence (AAAI 2006), pp. 129–134. AAAI Press, Stanford (2006)
Truszczyński, M.: Strong and uniform equivalence of nonmonotonic theories — an algebraic approach. In: Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 389–399. AAAI Press, Stanford (2006)
Truszczyński, M.: The modal logic S4F, the default logic, and the logic here-and-there. In: Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI 2007), AAAI Press, Stanford (2007)
Turner, H.: Strong equivalence made easy: nested expressions and weight constraints. Theory and Practice of Logic Programming 3, 609–622 (2003)
van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming language. Journal of the ACM 23(4), 733–742 (1976)
Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of the ACM 38(3), 620–650 (1991)
Vennekens, J., Denecker, M.: An algebraic account of modularity in ID-logic. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 291–303. Springer, Heidelberg (2005)
Vennekens, J., Gilis, D., Denecker, M.: Splitting an operator: an algebraic modularity result and its applications to logic programming. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 195–209. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Truszczyński, M. (2007). Logic Programming for Knowledge Representation. In: Dahl, V., Niemelä, I. (eds) Logic Programming. ICLP 2007. Lecture Notes in Computer Science, vol 4670. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74610-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-74610-2_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74608-9
Online ISBN: 978-3-540-74610-2
eBook Packages: Computer ScienceComputer Science (R0)