Abstract
We consider the problem of obtaining a minimal logic program strongly equivalent (under the stable models semantics) to a given arbitrary propositional theory. We propose a method consisting in the generation of the set of prime implicates of the original theory, starting from its set of countermodels (in the logic of Here-and-There), in a similar vein to the Quine-McCluskey method for minimisation of boolean functions. As a side result, we also provide several results about fundamental rules (those that are not tautologies and do not contain redundant literals) which are combined to build the minimal programs. In particular, we characterise their form, their corresponding sets of countermodels, as well as necessary and sufficient conditions for entailment and equivalence among them.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47, 3–41 (2006)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R.A., Bowen, K. (eds.) Proc. of the Fifth International Conference on Logic Programming, ICLP 1988, Seattle, WA, USA, pp. 1070–1080. The MIT Press, Cambridge, Massachusetts (1988)
Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transactions on Computational Logic 2(4), 526–541 (2001)
Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for logic programs with variables. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007, vol. 4483, pp. 260–265. Springer, Heidelberg (2007)
Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS(LNAI), vol. 3662, pp. 119–131. Springer, Heidelberg (2005)
Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Proc. of the Intl. Joint Conf. on Artificial Intelligence (IJCAI 2007) (2007)
Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic programs. Theory and Practice of Logic Programming (to appear, 2007)
Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Semantics and complexity. In: Alferes, J.J., Leite, J.A. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, Springer, Heidelberg (2004)
Cabalar, P., Pearce, D., Valverde, A.: Reducing propositional theories in equilibrium logic to logic programs. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS (LNAI), vol. 3808, pp. 4–17. Springer, Heidelberg (2005)
Osorio, M., Navarro, J.A., Arrazola, J.: Equivalence in answer set programming. In: Pettorossi, A. (ed.) LOPSTR 2001. LNCS, vol. 2372, pp. 57–75. Springer, Heidelberg (2002)
Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform and strong equivalence. In: Lifschitz, V., Niemelä, I. (eds.) Logic Programming and Nonmonotonic Reasoning. LNCS (LNAI), vol. 2923, pp. 87–99. Springer, Heidelberg (2003)
Pearce, D.: Simplifying logic programs under answer set semantics. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 210–224. Springer, Heidelberg (2004)
Lin, F., Chen, Y.: Discovering classes of strongly equivalent logic programs. In: Proc. of the Intl. Joint Conf. on Artificial Intelligence (IJCAI 2005), pp. 516–521 (2005)
Eiter, T., Fink, M., Tompits, H., Traxler, P., Woltran, S.: Replacements in non-ground answer-set programming. In: Proc. of KR 2006, pp. 340–350. AAAI, Stanford (2006)
Fink, M., Pichler, R., Tompits, H., Woltran, S.: Complexity of rule redundancy in non-ground answer-set programming over finite domains. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007, vol. 4483, pp. 260–265. Springer, Heidelberg (2007)
Quine, W.V.O.: The problem of simplifying truth functions. American Mathematical Monthly 59, 521–531 (1952)
McCluskey, E.J.: Minimization of boolean functions. Bell System Technical Journal 35, 1417–1444 (1956)
Cabalar, P., Pearce, D., Valverde, A.: Minimal logic programs (extended report), Technical report (2007), available at http://www.dc.fi.udc.es/~cabalar/minlp-ext.pdf
Petrick, S.R.: A direct termination of the irredundant forms of a boolean function from the set of prime implicants. Technical Report AFCRC-TR-56-110, Air Force Cambridge Res. Center, Cambridge, MA (1956)
Inoue, K., Sakama, C.: Negation as failure in the head. Journal of Logic Programming 35(1), 39–78 (1998)
Inoue, K., Sakama, C.: Equivalence of logic programs under updates. In: Alferes, J.J., Leite, J.A. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 174–186. Springer, Heidelberg (2004)
Eiter, T., Fink, M., Tompits, H., Woltran, S.: Formal methods for comparing and optimizing nonmonotonic logic programs Research project (last updated 2007), web page http://www.kr.tuwien.ac.at/research/eq.html
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cabalar, P., Pearce, D., Valverde, A. (2007). Minimal Logic Programs. In: Dahl, V., Niemelä, I. (eds) Logic Programming. ICLP 2007. Lecture Notes in Computer Science, vol 4670. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74610-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-74610-2_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74608-9
Online ISBN: 978-3-540-74610-2
eBook Packages: Computer ScienceComputer Science (R0)