Abstract
We provide a general and modular framework for describing inferences in Answer Set Programming (ASP) that aims at an easy incorporation of additional language constructs. To this end, we generalize previous work characterizing computations in ASP by means of tableau methods. We start with a very basic core fragment in which rule heads and bodies consist of atomic literals. We then gradually extend this setting by focusing on the concept of an aggregate, understood as an operation on a collection of entities. We exemplify our framework by applying it to conjunctions in rule bodies, cardinality constraints as used in smodels, and finally to disjunctions in rule heads.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)
Mitchell, D.: A SAT solver primer. Bulletin of the European Association for Theoretical Computer Science 85, 112–133 (2005)
Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. Journal of Artificial Intelligence Research 22, 319–351 (2004)
Gebser, M., Schaub, T.: Tableau calculi for answer set programming. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 11–25. Springer, Heidelberg (2006)
D’Agostino, M., Gabbay, D., Hähnle, R., Posegga, J.: Handbook of Tableau Methods. Kluwer Academic Publishers, Dordrecht (1999)
Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138(1-2), 181–234 (2002)
Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory and Practice of Logic Programming 5(1-2), 45–74 (2005)
Liu, L., Truszczyński, M.: Properties of programs with monotone and convex constraints. In: Veloso, M., Kambhampati, S. (eds.) Proceedings of the National Conference on Artificial Intelligence (AAAI 2005), pp. 701–706. AAAI/MIT Press (2005)
Faber, W.: Unfounded sets for disjunctive logic programs with arbitrary aggregates. [19] 40–52
Ferraris, P.: Answer sets for propositional theories. [19] 119–131
Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Plenum Press, New York (1978)
van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs. Journal of the ACM 38(3), 620–650 (1991)
Beame, P., Pitassi, T.: Propositional proof complexity: Past, present, and future. Bulletin of the European Association for Theoretical Computer Science 65, 66–89 (1998)
Järvisalo, M., Junttila, T., Niemelä, I.: Unrestricted vs restricted cut in a tableau method for Boolean circuits. Annals of Mathematics and Artificial Intelligence 44(4), 373–399 (2005)
Syrjänen, T.: Lparse 1.0 user’s manual, http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
Leone, N., Rullo, P., Scarcello, F.: Disjunctive stable models: Unfounded sets, fixpoint semantics, and computation. Information and Computation 135(2), 69–112 (1997)
Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Transactions on Computational Logic 7(3), 499–562 (2006)
Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: Veloso, M. (ed.) Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 386–392. AAAI/MIT Press (2007)
Baral, C., Greco, G., Leone, N., Terracina, G. (eds.): LPNMR 2005. LNCS (LNAI), vol. 3662. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gebser, M., Schaub, T. (2007). Generic Tableaux for Answer Set Programming. In: Dahl, V., Niemelä, I. (eds) Logic Programming. ICLP 2007. Lecture Notes in Computer Science, vol 4670. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74610-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-74610-2_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74608-9
Online ISBN: 978-3-540-74610-2
eBook Packages: Computer ScienceComputer Science (R0)