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Abstract. This paper examines the security of AES-192 and AES-256
against a related-key rectangle attack. We find the following new attacks:
8-round reduced AES-192 with 2 related keys, 10-round reduced AES-192
with 64 or 256 related keys and 9-round reduced AES-256 with 4 related
keys. Our attacks reduce the complexity of earlier attacks presented at
FSE 2005 and Eurocrypt 2005: for reduced AES-192 with 8 rounds, we
decrease the required number of related keys from 4 to 2 at the cost of a
higher data and time complexity; we present the first shortcut attack on
AES-192 reduced to 10 rounds; for reduced AES-256 with 9 rounds, we
decrease the required number of related keys from 256 to 4 and both the
data and time complexity at the cost of a smaller number of attacked
rounds. Furthermore, we point out some flaw in the 9-round AES-192
attack presented at Eurocrypt 2005, show how to fix it and enhance the
attack in terms of the number of related keys.

Keywords: Block Ciphers, Cryptanalysis, AES, Related-Key Rectangle
Attack.

1 Introduction

The Advanced Encryption Standard (AES), the successor to the Data En-
cryption Standard (DES), is a block cipher adopted as mandatory encryption
standard by the US government. Since NIST announced that the block cipher
Rijndael, designed by Daemen and Rijmen [12], was selected for the AES in 2000,
it has gradually become one of the most widely used encryption algorithms in
the world. Therefore, it is important to continue studying the security of AES.
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The AES algorithm is a 128-bit SP-network block cipher, which uses 128-bit,
192-bit or 256-bit keys. According to the length of the keys, the AES per-
forms different key scheduling algorithms, different numbers of rounds, but the
same round function which is made up of SubBytes (SB), ShiftRows (SR), Mix-
Columns (MC) and AddRoundKey (ARK). These different versions of AES are
referred to as AES-128, AES-192 and AES-256.

One of the most powerful known attacks on block ciphers is differential crypt-
analysis [1] introduced by Biham and Shamir in 1990. It uses a differential with a
non-trivial probability to retrieve subkeys for the first or last few rounds. After this
attack was introduced, it has been applied effectively to many known block ciphers
and various variants of this attack have been proposed such as the truncated dif-
ferential attack [24], the higher order differential attack [24], the differential-linear
attack [26], the impossible differential attack [3], the boomerang attack [32] and
the rectangle attack [5]. Unlike differential cryptanalysis, in the boomerang and
rectangle attacks [32,5], two consecutive differentials are used, which are indepen-
dent of each other, in order to retrieve subkeys for the first or last few rounds.

In 1992 and 1993, Knudsen [23] and Biham [2] independently introduced a
cryptanalytic method using related keys, called the related-key attack [2], which
applies differential cryptanalysis to the cipher with different, but related un-
known keys. This attack is based on the key scheduling algorithm and on the
encryption/decryption algorithms, hence a block cipher with a weak key schedul-
ing algorithm may be vulnerable to this kind of attack. Several cryptanalytic
results of this attack were reported in [18,19,10,20].

The related-key rectangle attack introduced in [21,16,6] combines the rectan-
gle and related-key attacks by applying the rectangle attack to the cipher with
different, but related unknown keys: [21,16,6] show how to apply the rectangle
attack with 2, 4, and more than 4 related keys, and show that this kind of attack
can be applied to 8-round reduced AES-192 with 4 related keys [16], 9-round
reduced AES-192 with 256 related keys [6], and 10-round reduced AES-256 with
256 related keys [6]. Several other articles have been published that demonstrate
the power of this attack [7,13,27,28].

In this paper we examine the security of AES-192 and AES-256 against a
related-key rectangle attack in other related-key settings. We show that a related-
key rectangle attack is applicable to 8-round reduced AES-192 with 2 related
keys, 10-round reduced AES-192 with 64 or 256 related keys and 9-round reduced
AES-256 with 4 related keys. Our 10-round AES-192 attack leads to the best
known attack on AES-192 and our 8-round AES-192, 9-round AES-256 attacks
are both better than the previously best known attacks on AES-192 with 2
related keys and AES-256 with 4 related keys in terms of the number of attacked
rounds and a data or time complexity. We also demonstrate a flaw in the 9-round
AES-192 attack presented at Eurocrypt 2005 [6], show how to fix it and enhance
the attack in terms of the number of related keys (from 256 to 64 related keys).
See Table 1 for the comparison of our results and the previous ones on AES.

The outline of this paper is as follows: in Sect. 2, we give a brief description
of AES and in Sect. 3, we describe a general method of the related-key rectangle
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Table 1. Summary of the previous attacks and our attacks on AES

Block Type of Number of Number of Complexity
Cipher Attack Rounds keys Data / Time

AES-128 Imp. Diff. 5 1 229.5CP / 231[4]
(10 rounds) 6 1 291.5CP / 2122[11]

Boomerang 6 1 271ACPC / 271[9]

Partial Sums 6 1 6 · 232CP / 244[14]
7 1 2128 − 2119CP / 2120[14]

AES-192 Imp. Diff. 7 1 292CP / 2186 [31]

(12 rounds) Square 7 1 232CP / 2184 [29]

Partial Sums 7 1 19 · 232CP / 2155 [14]
7 1 2128 − 2119CP / 2120[14]
8 1 2128 − 2119CP / 2188[14]

RK Imp. Diff. 7 2 2111RK-CP / 2116 [17]
7 32 256CP / 294 [8]
8 2 288RK-CP / 2183 [17]
8 32 2116CP / 2134 [8]
8 32 292CP / 2159 [8]
8 32 268.5CP / 2184 [8]

RK Rectangle 8 4 286.5RK-CP / 286.5[16]
8 2 294RK-CP / 2120(New)
9† 256 286RK-CP / 2125[6]
9‡ 64 285RK-CP / 2182(New)
10 256 2125RK-CP / 2182(New)
10 64 2124RK-CP / 2183(New)

AES-256 Partial Sums 8 1 2128 − 2119CP / 2204 [14]
(14 rounds) 9 256 285CP / 5 · 2224 [14]

RK Rectangle 9 4 299RK-CP / 2120(New)
10 256 2114.9RK-CP / 2171.8[6]
10 64 2113.9RK-CP / 2172.8(New)

CP: Chosen Plaintexts, ACPC: Adaptive Chosen Plaintexts and Ciphertexts.
RK: Related-Key, Time: Encryption units.
†: the attack with some flaw, ‡: the attack correcting the flaw in †.

attack. Sections 4 and 5 present our related-key rectangle attacks on reduced
AES-192 and AES-256. Section 6 gives some comments on the previous 9-round
AES-192 attack. Finally, we conclude the paper in Sect. 7.

2 Description of AES

AES encrypts data blocks of 128 bits with 128, 192 or 256-bit keys. According
to the length of the keys, AES uses a different number of rounds, i.e., it has 10,
12 and 14 rounds when used with 128, 192 and 256-bit keys, respectively. The
round function of AES consists of the following four basic transformations:

– SubBytes (SB) is a nonlinear byte-wise substitution that applies the same
8 × 8 S-box to every byte.

– ShiftRows (SR) is a cyclic shift of the i-th row by i bytes to the left.
– MixColumns (MC) is a matrix multiplication applied to each column.
– AddRoundKey (ARK) is an exclusive-or with the round key.
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Each round function of AES applies the SB, SR, MC and ARK steps in order,
but MC is omitted in the last round. Before the first round, an extra ARK step
is applied. We call the key used in this step a whitening key. For more details of
the above four transformations, we refer to [12].

AES uses different key scheduling algorithms according to the length of the sup-
plied keys. The key schedule of AES-128 accepts a 128-bit key (W0, W1, W2, W3)
and generates subkeys W4, W5, · · · , W43, where each Wi is a 32-bit word composed
of 4 bytes in column. The subkeys are generated by the following procedure:

– For i = s till i = t do the following (for AES-128, s = 4 and t = 43),
• If i ≡ 0 mod s, then Wi = Wi−s ⊕ SB(RotByte(Wi−1)) ⊕ Rcon(i/s),
• else Wi = Wi−s ⊕ Wi−1,

where RotByte represents one byte rotation and Rcon denotes fixed constants
depending on its input. In AES-128, the whitening key is (W0, W1, W2, W3) and
the subkey of round i is (W4i+4, W4i+5,W4i+6,W4i+7), where 0 ≤ i ≤ 9.

Similarly, the key schedules of AES-192 and AES-256 accept 192- and 256-bit
keys, and generate as many subkeys as required. The key schedule of AES-192
is exactly the same as that of AES-128 except for the use of s = 6 and t = 51.
The subkeys of AES-256 are derived from the following procedure:

– For i = 8 till i = 59 do the following,
• If i ≡ 0 mod 8 then Wi = Wi−8 ⊕ SB(RotByte(Wi−1)) ⊕ Rcon(i/8),
• If i ≡ 4 mod 8 then Wi = Wi−8 ⊕ SB(Wi−1),
• else Wi = Wi−8 ⊕ Wi−1.

In this paper a 128-bit block of AES is represented by a 4 × 4 byte matrix as
in Fig. 1 or by ((X0, X1, X2, X3), (X4, X5, X6, X7), (X8, X9, X10, X11), (X12, X13,
X14, X15)) .

X0 X4 X8 X12

X1 X5 X9 X13

X2 X6 X10 X14

X3 X7 X11 X15

�

�

�

�

�� � �

R0

R1

R2

R3

C0 C1 C2 C3

Fig. 1. Byte coordinate of a 128-bit block of AES (Ri: Row i, Ci: Column i, Xi: Byte i)

3 The Related-Key Rectangle Attack

The related-key rectangle attack is based on two consecutive related-key differ-
entials with relatively high probabilities which are independent of each other:
the underlying cipher E : {0, 1}n × {0, 1}k → {0, 1}n is treated as a cascade of
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two sub-ciphers E = E1 ◦ E0, where {0, 1}k and {0, 1}n are the key space and
the plaintext/ciphertext space, respectively. We assume that for E0 there exists
a related-key differential α → β with probability p and for E1 there exists a
related-key differential γ → δ with probability q. More precisely,

p = Pr[E0
K(X) ⊕ E0

K∗(X ⊕ α) = β] = Pr[E0
K′ (X) ⊕ E0

K′∗(X ⊕ α) = β],

q = Pr[E1
K(X) ⊕ E1

K′(X ⊕ γ) = δ] = Pr[E1
K∗(X) ⊕ E1

K′∗(X ⊕ γ) = δ],

where K∗ = K ⊕ ΔK, K ′ = K ⊕ ΔK ′ and K ′∗ = K ⊕ ΔK ⊕ ΔK ′, i.e.,
K ⊕ K∗ = K ′ ⊕ K ′∗ = ΔK and K ⊕ K ′ = K∗ ⊕ K ′∗ = ΔK ′ for known key
differences ΔK and ΔK ′. Then, these consecutive related-key differentials can
be used efficiently to the following related-key rectangle distinguisher:

– Choose two random n-bit plaintexts P and P ′ and compute two other plain-
texts P ∗ = P ⊕ α and P ′∗ = P ′ ⊕ α.

– With a chosen plaintext attack scenario, obtain the corresponding cipher-
texts C = EK(P ), C∗ = EK∗(P ∗), C′ = EK′(P ′) and C′∗ = EK′∗(P ′∗).

– Check if C ⊕ C′ = C∗ ⊕ C′∗ = δ.

The probability that the ciphertext quartet (C, C∗, C′C′∗) satisfies the last δ
test is computed as follows: let X, X∗, X ′ and X ′∗ denote the encrypted values
of P, P ∗, P ′ and P ′∗ under E0 with K, K∗, K ′ and K ′∗, respectively. Then,
the probability that X ⊕ X∗ = X ′ ⊕ X ′∗ = β is about p2 by the related-key
differential for E0. In the above process, we randomly choose two plaintexts P
and P ′, so we expect X ⊕ X ′ = γ with probability 2−n. Once the two above
events occur, X∗ ⊕ X ′∗ = (X ⊕ X∗) ⊕ (X ′ ⊕ X ′∗) ⊕ (X ⊕ X ′) = β ⊕ β ⊕ γ = γ
with probability 1. Since the probability of the related-key differential γ → δ
for E1 is q, X ⊕ X ′ = X∗ ⊕ X ′∗ = γ goes to C ⊕ C′ = C∗ ⊕ C′∗ = δ with a
probability of about q2. Therefore, the total probability that the last δ test in
the above process is satisfied is about

∑

β,γ

p2 · 2−n · q2 = p̂2 · q̂2 · 2−n, where p̂ =
√∑

β

p2 and q̂ =
√∑

γ

q2 .

On the other hand, for a random cipher, the δ test holds with probabil-
ity 2−2n and thus if the above probability is larger than 2−2n for any 4-tuple
(α, δ, ΔK, ΔK ′), i.e., if p̂ · q̂ > 2−n/2, the related-key rectangle distinguisher
can be used to distinguish E from a random cipher. Similarly, two consecutive
related-key truncated differentials can be used to form a related-key rectangle
distinguisher.

According to the condition of the key differences ΔK and ΔK ′, the above
related-key rectangle distinguisher is used in different ways. If ΔK �= 0 and
ΔK ′ = 0, then the distinguisher works with two related keys; a related-key dif-
ferential for E0 and a regular (non-related-key) differential for E1. If ΔK = 0
and ΔK ′ �= 0, then the distinguisher also works with two related keys; however,
a regular differential for E0 and a related-key differential for E1 are used. If
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ΔK �= 0, ΔK ′ �= 0 and ΔK �= ΔK ′, then the distinguisher works with four
related keys, in which related-key differentials for both E0 and E1 are used.
Further, more than four related keys can be used in the related-key rectangle
distinguisher as in [6,7]; the basic idea is the same as that of the distinguisher
with two or four related keys.

4 Related-Key Rectangle Attack on 10-Round AES-192

This section shows how to exploit the related-key rectangle attack to devise key
recovery attacks on 10-round AES-192 with 64 or 256 related keys. We first focus
on 10-round AES-192 with 256 related keys.

Denote the 10 rounds of AES-192 by E = Ef ◦ E1 ◦ E0 ◦ Eb, where Eb

is round 0 including the whitening key addition step and excluding the key
addition step of round 0, E0 is rounds 1-4 including the key addition step of
round 0, E1 is rounds 5-8 and Ef is round 9. In our 10-round AES-192 attack,
we use a related-key truncated differential for E0 depicted in Fig. 2 and another
related-key truncated differential for E1 depicted in Fig. 3. After we convert these
related-key truncated differentials for E0 and E1 into a related-key rectangle
distinguisher for E1 ◦E0, we apply it to recover some portions of the keys in Eb

and Ef . Before describing our attack, we define some notation which is used in
our attacks on AES.

– Kw, K∗
w, K ′

w, K ′∗
w : whitening keys generated from master keys K, K∗, K ′,

K ′∗, respectively.
– Ki, K

∗
i , K ′

i, K
′∗
i : subkeys of round i generated from K, K∗, K ′, K ′∗, respec-

tively.
– P, P ∗, P ′, P ′∗: plaintexts encrypted under K, K∗, K ′, K ′∗, respectively.
– Ii, I

∗
i , I ′i, I

′∗
i : input values to round i caused by plaintexts P, P ∗, P ′, P ′∗ under

K, K∗, K ′, K ′∗, respectively.
– a: a fixed nonzero byte value.
– b, c: output differences of S-box for the fixed nonzero input difference a.
– ∗: a variable and unknown byte.

4.1 8-Round Related-Key Rectangle Distinguisher

Our related-key truncated differentials depicted in Figs. 2 and 3 exploit the
slow difference propagation of the key schedule of AES-192, which makes it
possible that 3-round key differences ΔK0||ΔK1||ΔK2 and ΔK ′

5||ΔK ′
6||ΔK ′

7
satisfy HWb(ΔK0) = HWb(ΔK ′

5) = 2, HWb(ΔK1) = HWb(ΔK ′
6) = 0 and

HWb(ΔK2) = HWb(ΔK ′
7) = 1, where HWb(X) is the byte Hamming weight of

X . Using these key differences with small byte Hamming weights we make ΔI1 =
ΔI ′6 = 0 in our related-key truncated differentials which induce HWb(ΔI3) =
HWb(ΔI ′8) = 1 (see Figs. 2 and 3 for ΔKi, ΔK ′

i, ΔIi and ΔI ′i) and we add
one or two more rounds to get longer related-key differentials. Note that our
related-key truncated differential for E0 is the same as the one for rounds 0-3
(including the whitening key addition step) used in [16].
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In order to convert the two 4-round related-key truncated differentials into
an 8-round related-key rectangle distinguisher, we first make the following As-
sumptions 1, 2 and 3.

Assumption 1. The key quartet (K, K∗, K ′, K ′∗) is related as follows;

K ⊕ K∗ = K ′ ⊕ K ′∗ = ΔK, K ⊕ K ′ = K∗ ⊕ K ′∗ = ΔK ′ .

Assumption 2. A plaintext quartet (P, P ∗, P ′, P ′∗) is related as follows;

P ⊕ P ∗, P ′ ⊕ P ′∗ ∈ ΔP .

Assumption 3. Eb
K(P ) ⊕ Eb

K∗(P ∗) = Eb
K′(P ′) ⊕ Eb

K′∗(P ′∗) = ΔK0 .

wK 0K 1K 2K

aa aa a

SB,SR,MC SB,SR,MC BS,SR,MC SB,SR,MC

* *

* *a

* *

* *

P

* *

* *

* *

* *

*

a *

*

*

K

S

K

S

K

S

3K

a aK

S

SB,SR,MC

* * * *

* * * *

* * * *

* * * *

4K

a a a aK

S

a

Round before 

the differential 

I 1 I2 3I 4I 5II 0

Fig. 2. The first related-key truncated differential for rounds 1-4 including the key
addition step of round 0 (E0), and the preceding differential for round 0 including the
whitening key addition step and excluding the key addition step of round 0 (Eb)

Note that ΔK is the same as the first six columns of ΔKw||ΔK0 in Fig. 2. As
stated in our notation, I5 = E0

K(Eb
K(P )), I∗5 = E0

K∗(Eb
K∗(P ∗)), I ′5 = E0

K′(Eb
K′

(P ′)) and I ′∗5 = E0
K′∗(Eb

K′∗(P ′∗)). By the related-key truncated differential for
E0, I5⊕I∗5 is equal to I ′5⊕I ′∗5 with a probability of about (2−32·2−7)2·(27−2)·232+
(2−32 ·2−6)2 ·232 ≈ 2−39 (this probability has been used for the 8-round AES-192
attack presented in [16]). It follows from counting over all the differentials that
can be generated by the active S-box with input difference a and the other four
active S-boxes in round 4. Since ShiftRows and MixColumns are linear layers,
they can be ignored in round 4 when computing the probability (see Fig. 2).
Moreover, the probability that I5 ⊕ I ′5, I∗5 ⊕ I ′∗5 ∈ ΔI ′5 is about 2−64 under the
condition I5 ⊕ I∗5 = I ′5 ⊕ I ′∗5 (see Fig. 3 for ΔI ′5). Hence the probability that
I5 ⊕ I ′5, I∗5 ⊕ I ′∗5 ∈ ΔI ′5 is about 2−39 · 2−64 = 2−103. Since eK(I5) ⊕ eK′(I ′5) = 0
with probability 2−64 and eK∗(I∗5 ) ⊕ eK′∗(I ′∗5 ) = 0 with a probability of about
2−64 under the condition I5 ⊕ I ′5, I∗5 ⊕ I ′∗5 ∈ ΔI ′5, where e is the encryption for
round 5,

E1
K(I5) ⊕ E1

K′(I ′5), E1
K∗(I∗5 ) ⊕ E1

K′∗(I ′∗5 ) ∈ ΔI ′9
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7K' 8K'K'
a aaa aa a

b b

SB,SR,MC SB,SR,MC SB,SR,MC SB,SR

* *

* *

* *

* *

I'

a * a a

*

*

*

* a * *

*

*

* c c

K

S

K

S

K

S

K

S

SB,SR,MC

5K' 6K' 9K'
a a

c c

K

S

I'65

Pr=2
-64

Round after 

the differential 

I'9I'7 I'8 I'10

Fig. 3. The second related key truncated differential for rounds 5-8 (E1) and the fol-
lowing differential for round 9 (Ef )

with a probability of 2−231 (see Fig. 3 for ΔI ′9). However, the same statement
can be applied to a random cipher with probability (2−128 · (27 − 1))2 ≈ 2−242,
since the number of elements in ΔI ′9 is 27 − 1. The first column of ΔI ′9 is

B = {MC(y, 0, 0, 0) | y = BS(x) ⊕ BS(x ⊕ a), x = 0, 1, 2, · · · , 255}. (1)

4.2 Key Recovery Attack on 10-Round AES-192 with 256 Related
Keys

In order to produce the round-key differences depicted in Fig. 3, the 8-bit differ-
ence a should satisfy the 8-bit difference b after S-box during the key generation
for the third column of ΔK ′

3. Given the 8-bit difference a there are 127 possible
candidates for the b difference, hence the attack starts by gathering all possible
key quartets (K, K∗, K̃ ′, K̃ ′∗) of which one satisfies the desired key condition.
Note that the keys K∗ = K ⊕ ΔK, K̃ ′ = K ⊕ ΔK̃ ′ and K̃ ′∗ = K ⊕ ΔK ⊕ ΔK̃ ′

where ΔK is fixed as ΔKw and the first two columns of ΔK0 in Fig. 2 and ΔK̃ ′

is one of the 127 possible differences; bytes 8 and 12 are both a, bytes 3 and
11 are both b′ and other bytes are all zeros, where b′ is one of the 127 possible
candidates for the b difference. So the total number of required related keys is
256. We apply the related-key rectangle attack to 10-round AES-192 for each
key quartet. During this procedure, we stop our attack when we have found a
key quartet (K, K∗, K̃ ′, K̃ ′∗) that satisfies the desired key condition b′ = b, i.e.,
ΔK̃ ′ = ΔK ′, (K, K∗, K̃ ′, K̃ ′∗) = (K, K∗, K ′, K ′∗).

The aim of our attack is to recover bytes 1, 2, 6, 7, 8, 11, 12, 13 of the
whitening key quartet (Kw, K∗

w, K ′
w, K ′∗

w ) and bytes 0, 7, 8, 10, 12, 13 of the
subkey quartet (K9, K

∗
9 , K ′

9, K
′∗
9 ), for which the byte positions are marked as

∗ on ΔP and ΔI ′10 depicted in Fig. 2 and Fig. 3. This attack distinguishes a
right key quartet from wrong ones by analyzing enough plaintext quartets with
each guessed key quartet. In this attack, we need 264 guesses for the whitening
key quartet and 272 guesses for the subkey quartet in round 9, since bytes 0,
7, 8, 10, 12, 13 of ΔK9 are d, 0, d, e, 0, f , respectively, where d, e and f
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are unknown 8-bit values (note that bytes 0, 7, 8, 10, 12, 13 of ΔK ′
9 are fixed

by a, 0, 0, 0, 0, 0, respectively). Thus, taking into account the guessing of
candidates for the difference b, we need about 2143 key guesses in total (in our
attack it can be reduced by a factor of two on average).

The attack algorithm goes as follows:

1. Choose 254 structures S1, S2, · · · , S254 of 264 plaintexts each, where in each
structure the 64 bits of bytes 0, 3, 4, 5, 9, 10, 14, 15 are fixed. With a chosen
plaintext attack scenario, obtain all their corresponding ciphertexts under
the key K. (Step 1 takes 2118 chosen plaintexts and about 2118 encryptions.
Note that n encrpytions mean n 10-round AES-192 encryptions.)

2. Compute 254 structures S∗
1 , S∗

2 , · · · , S∗
254 of 264 plaintexts each by XORing

the plaintexts in S1, S2, · · · , S254 with a 128-bit value M of which byte 9 is a
and all the other bytes are 0. With a chosen plaintext attack scenario, obtain
all their corresponding ciphertexts under the key K∗, where K∗ = K ⊕ΔK.
(Similarly, Step 2 takes 2118 chosen plaintexts and about 2118 encryptions.)

3. Guess a candidate for the difference b and compute ΔK̃ ′. For the key differ-
ence ΔK̃ ′, do the following:

3.1 Choose 254 structures S′
1, S′

2, · · · , S′
254 of 264 plaintexts each, where in

each structure the 64 bits of bytes 0, 3, 4, 5, 9, 10, 14, 15 are fixed.
With a chosen plaintext attack scenario, obtain all their corresponding
ciphertexts under the key K̃ ′, where K̃ ′ = K ⊕ΔK̃ ′. (For each guess of
ΔK̃ ′, Step 3.1 takes 2118 chosen plaintexts and about 2118 encryptions.)

3.2 Compute 254 structures S′∗
1 , S′∗

2 , · · · , S′∗
254 of 264 plaintexts each by

XORing the plaintexts in S′
1, S′

2, · · · , S′
254 with M . With a chosen

plaintext attack scenario, obtain all their corresponding ciphertexts un-
der the key K̃ ′∗, where K̃ ′∗ = K ⊕ ΔK ⊕ΔK̃ ′. Go to Step 4. (For each
guess of ΔK̃ ′, this step also takes 2118 chosen plaintexts and about 2118

encryptions.)
4. Guess a 64-bit subkey kw in the position of bytes 1, 2, 6, 7, 8, 11, 12,

13 of the whitening key and compute k∗
w = kw ⊕ Δkw, k′

w = kw ⊕ Δk̃′
w,

k′∗
w = kw ⊕ Δkw ⊕ Δk̃′

w, where Δkw and Δk̃′
w are the fixed 64-bit key differ-

ences in the position of bytes 1, 2, 6, 7, 8, 11, 12, 13 of ΔKw (depicted in
Fig. 2) and ΔK̃ ′

w, respectively. For the subkey quartet (kw , k∗
w, k′

w, k′∗
w ), do

the following:

4.1 Partially encrypt each plaintext Pi,l0 in Si through Eb under kw, i =
1, 2, · · · , 254, l0 = 1, 2, · · · , 264. We denote the partially encrypted value
by xi,l0 . Partially decrypt each xi,l0 ⊕ΔK0,R through Eb under k∗

w, and
find the corresponding plaintext in S∗

i , denoted P ∗
i,l0

. We denote the cor-
responding ciphertexts of Pi,l0 and P ∗

i,l0
by Ci,l0 and C∗

i,l0
, respectively.

(For each guess of 64-bit kw, Step 4.1 takes about 264+1 ·(8/16)·(1/10) =
260.7 encryptions. Note that this step is independent of ΔK̃ ′ in Step 3,
so there is no need to run this step for every iteration of Step 3.)
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4.2 Partially encrypt each plaintext P ′
j,l1

in S′
j through Eb under k′

w, j =
1, 2, · · · , 254, l1 = 1, 2, · · · , 264. We denote the partially encrypted value
by x′

j,l1
. Partially decrypt each x′

j,l1
⊕ ΔK0,R through Eb under k′∗

w ,
and find the corresponding plaintext in S′∗

j , denoted P ′∗
j,l1

. We denote
the corresponding ciphertexts of P ′

j,l1
and P ′∗

j,l1
by C′

j,l1
and C′∗

j,l1
, re-

spectively. (For each guess of 71-bit (kw, ΔK̃ ′), Step 4.2 takes about
264+1 · (8/16) · (1/10) = 260.7 encryptions.)

4.3 Insert Ci,l0 ||C∗
i,l0

in a hash table (indexed by bytes 1, 2, 3, 4, 5, 6, 9, 14)
and then check that (Ci,l0 ||C∗

i,l0
) ⊕ (C′

j,l1
||C′∗

j,l1
) ∈ ΔI ′10(1)||ΔI ′10(2) for

all i, j, l0 and l1, where ΔI ′10(1) = {((∗, 0, 0, 0), (a, 0, 0, ∗), (b1, 0, ∗, b2),
(b3, ∗, 0, b2))}, ΔI ′10(2) = {((∗, 0, 0, 0), (a, 0, 0, ∗), (b4, 0, ∗, b2), (b5, ∗, 0,
b2))}, ∗ is any 8-bit value, and bi is one of the output differences caused
by the input difference a to the S-box. Note that ΔI ′10(1) and ΔI ′10(2)
are both candidates for ΔI ′10, i.e., b2 is a candidate for c (see Fig. 3).
Keep in a table all the ciphertext quartets (Ci,l0 , C

′
j,l1

, C∗
i,l0

, C′∗
j,l1

) pass-
ing the both tests and go to Step 5 with this table. Since ΔI ′10(1) in
the first test has 253 out of 2128 values and ΔI ′10(2) in the second test
has 246 out of 2128 values, the expected number of quartets kept in the
table is about 2(54+64)·2 · 2−128+53 · 2−128+46 = 279. (For each guess of
71-bit (kw , ΔK̃ ′), Step 4.3 takes about 2119 memory accesses that are
equivalent to approximately 2112 encryptions according to the imple-
mentations of NESSIE primitives [30].)

5. Guess an 8-bit subkey k9,v in the position of byte 12 in round 9 and set
k∗
9,v = k′

9,v = k′∗
9,v = k9,v. For the 8-bit subkey quartet (k9,v, k

∗
9,v, k′

9,v, k
′∗
9,v),

do the following:

5.1 For all the remaining ciphertext quartets (Ci,l0 , C
′
j,l1

, C∗
i,l0

, C′∗
j,l1

), par-
tially decrypt Ci,l0 and C′

j,l1
under k9,v and k′

9,v through Ef , respec-
tively. If the partially decrypted pairs do not have the difference a,
then discard the corresponding ciphertext quartets. Since it has approx-
imately a 7-bit filtering, the number of remaining quartets after this step
is about 272. (The partial decryptions can be done after the remaining
ciphertext quartets have been sorted by byte 12 of (Ci,l0 , C

′
j,l1

) or this
step can use a pre-computed table, so Step 5.1 takes a relatively small
time complexity.)

5.2 For all the remaining ciphertext quartets (Ci,l0 , C
′
j,l1

, C∗
i,l0

, C′∗
j,l1

), par-
tially decrypt C∗

i,l0
and C′∗

j,l1
under k∗

9,v and k′∗
9,v through Ef , respec-

tively. If the partially decrypted pairs do not have the difference a,
discard the corresponding ciphertext quartets and then go to Step 6.
It also imposes approximately a 7-bit filtering, hence the number of re-
maining quartets after this step is about 265. (Similarly, Step 5.2 can
be performed efficiently.)

6. Guess an 8-bit subkey k9,w in the position of byte 8 in round 9 and set
k′
9,w = k9,w. For the 8-bit subkey pair (k9,w,k′

9,w), do the following:
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6.1 For all the remaining ciphertext quartets (Ci,l0 , C
′
j,l1

, C∗
i,l0

, C′∗
j,l1

), par-
tially decrypt Ci,l0 and C′

j,l1
under k9,w and k′

9,w through Ef , respec-
tively. If the partially decrypted pairs do not have the difference a, then
discard the corresponding ciphertext quartets. Since this imposes ap-
proximately a 7-bit filtering, the number of remaining quartets after this
step is about 258.

6.2 Guess an 8-bit value d to form an 8-bit subkey pair (k∗
9,w = k9,w ⊕ d,

k′∗
9,w = k9,w ⊕d) in the position of byte 8 in round 9. For the 8-bit subkey

pair (k∗
9,w,k′∗

9,w), do the following:
6.2.1 For all the remaining ciphertext quartets (Ci,l0 , C

′
j,l1

, C∗
i,l0

, C′∗
j,l1

),
partially decrypt C∗

i,l0
and C′∗

j,l1
under k∗

9,w and k′∗
9,w through Ef ,

respectively. If the partially decrypted pairs do not have the dif-
ference a, discard the corresponding ciphertext quartets and then
go to Step 7. It also induces approximately a 7-bit filtering, hence
the number of remaining quartets after this step is about 251.
(Similarly, Step 6 can be performed efficiently.)

7. Guess a 32-bit subkey k9,y in the position of bytes 0, 7, 10, 13 in round 9
and compute k′

9,y = k9,y ⊕ (a, 0, 0, 0). For the 32-bit subkey pair (k9,y , k′
9,y),

do the following:

7.1 For all the remaining ciphertext quartets (Ci,l0 , C
′
j,l1

, C∗
i,l0

, C′∗
j,l1

), par-
tially decrypt Ci,l0 and C′

j,l1
under k9,y and k′

9,y through Ef , respec-
tively. If the differences of the partially decrypted pairs are not in B
(see Eq. (1)), then discard the corresponding ciphertext quartets. Since
B has 27 − 1 out of 232 values, the remaining quartets after this step
is about 226. (For each guess of 127-bit (k9,y , d, k9,w, k9,v, kw, ΔK̃ ′),
Step 7.1 takes 251+1 · (4/16) · (1/10) = 246.7 encryptions.)

7.2 Guess two 8-bit values e, f to form a 32-bit subkey pair (k∗
9,y = k9,y ⊕

(d, 0, e, f), k′∗
9,y = k9,y ⊕ (d ⊕ a, 0, e, f)) in the position of bytes 0, 7, 10,

13 in round 9. For the 32-bit subkey pair (k∗
9,y,k′∗

9,y), do the following:
7.2.1 For all the remaining ciphertext quartets (Ci,l0 , C

′
j,l1

, C∗
i,l0

, C′∗
j,l1

),
partially decrypt C∗

i,l0
and C′∗

j,l1
under k∗

9,y and k′∗
9,y through Ef ,

respectively. If the differences of the partially decrypted pairs are
not in B, discard the corresponding ciphertext quartets and then
go to Step 8. This also induces approximately about a 25-bit
filtering, hence the number of remaining quartets after this step
is about 2 for each wrong key guess. (For each guess of 143-bit
(e, f, k9,y, d, k9,w, k9,v, kw, ΔK̃ ′), this step takes 226+1 · (4/16) ·
(1/10) = 221.7 encryptions.)

8. For the remaining ciphertext quartets (Ci,l0 , C
′
j,l1

, C∗
i,l0

, C′∗
j,l1

), classify the
quartets according to the differences of Ci,l0 and C′

j,l1
by byte 11. Discard

all the ciphertext quartets except for the group with the largest number of
quartets and then go to Step 9. Since this results in approximately a 7-bit
filtering for each pair of quartets, the remaining quartets after this step is
expected to be about 2−6 for each wrong key guess. (It takes a relatively
small time complexity.)
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9. If there are more than 16 quartets in the table, then output the guessed
subkey quartet as the right one. Otherwise, run the above steps with another
guess for the subkey quartet, i.e., (e, f, k9,y, d, k9,w, k9,v, kw, ΔK̃ ′).

About 2125 chosen plaintexts in Steps 1, 2 and 3 are encrypted on average,
hence the data complexity of this attack is about 2125 related-key chosen plain-
texts and the time complexity of Steps 1, 2 and 3 is about 2125 encryptions. Step 4
runs about 270 times, so the time complexity of Step 4.2 is about 260.7+70 = 2130.7

encryptions (it can be improved by a factor of about 24 by using a pre-computed
table1) and the time complexity of Step 4.3 is about 2112+70 = 2182 encryptions.
As stated above, Steps 5, 6 and 8 take relatively small time complexities com-
pared to other steps.

The time complexity for Step 7 depends on how many times this step runs,
which can be measured by the number of guessed subkeys (including d, e and
f). Since Steps 7.1 and 7.2 run in this attack 2126 and 2142 times on average,
these steps take 2172.7 and 2163.7 encryptions, respectively. However, the time
complexities of these steps can be improved by using a divide and conquer tech-
nique. In Step 7.1, two of the four bytes of the remaining ciphertext quartets are
first decrypted (these partial decryptions can be performed after the remaining
ciphertext quartets are sorted by these two bytes) and discard the ciphertext
quartets of which the decrypted two bytes do not have a difference in B with
respect to the two-byte position, and then do this test with other two bytes of
the remaining ciphertext quartets byte by byte. With this divide and conquer
technique, we can also run Step 7.2. This method allows Steps 7.1 and 7.2 to
decrease their time complexities down to about 2135.7 and 2146.7 encryptions,
respectively.

We can calculate the success rate of the attack by using the Poisson distrib-
ution. Since the expected number of remaining quartets for each wrong subkey
quartet is 2−6, the probability that the number of remaining quartets for each
wrong subkey quartet is larger than 16 is 2−150 by the Poisson distribution,
X ∼ Poi(λ = 2−6), PrX [X > 16] ≈ 2−150. It follows that the probability that
the attack outputs a wrong subkey quartet is quite low, since the total num-
ber of guessed wrong subkey quartets is about 2142. On the other hand, the
expected number of remaining quartets for the right subkey quartet is about
25 = 2236 · 2−231 due to our 8-round related-key rectangle distinguisher. Thus,
the probability that the number of remaining quartets for the right key quar-
tet is larger than 16 is 0.99 by the Poisson distribution, Y ∼ Poi(λ = 25),
PrY [Y > 16] ≈ 0.99.

Therefore, this attack works with a data complexity of about 2125 related-key
chosen plaintexts and with a time complexity of about 2182 encryptions and with
a success rate of 0.99.

1 Before running this attack, we can pre-compute a table which keeps 264 input pairs
(I0, I

∗
0 ) to round 0, where I∗

0 = BS−1(SR−1(MC−1(MC(SR(BS(I0))) ⊕ ΔK0,R))).
If Step 4.1 has access to this table for each guessed subkey (kw, k∗

w), it can find
plaintext pairs (Pi,l, P

∗
i,l) by XORing (kw, k∗

w) with (I0, I
∗
0 ).
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4.3 Reducing the Number of Related Keys from 256 to 64

If we take more delicate related keys in our attack, we can reduce the number
of related keys from 256 to 64 (note that the basic idea of this method has been
introduced in [8]). The following 64 related keys can be used in our attack:

– 16 key candidates Ki (i = 0, 1, · · · , 15) for the key K such that all the bytes
of the 16 Ki have the same values in each byte position except that byte 3 is
the same as byte 11 in each Ki, say si, but s0, s1, · · · , s15 are all pairwise
distinct.

– 16 key candidates K∗i for the key K∗ such that bytes 1 and 9 of Ki ⊕ K∗i

are both a, and the other bytes of Ki ⊕ K∗i are all 0.
– 16 key candidates K ′j (j = 0, 1, · · · , 15) for the key K ′ such that all the

bytes of the 16 K ′j are the same as those of Ki for some i except that byte 3
is the same as byte 11 in each K ′j , say tj , but t0, t1, · · · , t15 are all pairwise
distinct, and bytes 8 and 12 of K ′j ⊕ Ki are both a.

– 16 key candidates K ′∗j for the key K ′∗ such that bytes 1 and 9 of K ′∗j ⊕K ′j

are both a, and the other bytes of K ′∗j ⊕ K ′j are all 0.

Using these delicately chosen key relationships, we can make 256 key quartets
(Ki, K∗i, K ′j , K ′∗j) of which one is expected to satisfy the desired key condition,
Ki ⊕ K∗i = K ′j ⊕ K ′∗j = ΔK and Ki ⊕ K ′j = K∗i ⊕ K ′∗j = ΔK ′ (note that
bytes 3 and 11 of Ki ⊕ K ′j and K∗i ⊕ K ′∗j are both si ⊕ tj of which one is
expected to be b).

If the above 64 related keys are used in our attack algorithm, the attack
works with a data complexity of 2124 related-key chosen plaintexts (due to the
fact that the attack takes 2118 chosen plaintext queries for each key) and with a
time complexity of 2183 encryptions (due to the fact that Step 4.3 is iterated 27

times on average by the 256 key quartets).

5 Related-Key Rectangle Attacks on 8-Round AES-192
and 9-Round AES-256

Similarly, we can construct related-key rectangle attacks on 8-round AES-192
with two related keys (ΔK �= 0 and ΔK ′ = 0) and on 9-round AES-256 with
four related keys (ΔK �= 0, ΔK ′ �= 0 and ΔK �= ΔK ′).

The attack on 8-round AES-192 with two related keys recovers bytes 1, 2, 6,
7, 8, 11, 12, 13 of the whitening key pair (Kw, K∗

w) and bytes 3, 6, 9, 12 of the
subkey pair (K7, K

∗
7 ) with a data complexity of about 294 related-key chosen

plaintexts, a time complexity of about 2120 encryptions and a success rate of
0.9. See Figs. 2 and 4 for a schematic description of our 8-round AES-192 attack
(note that the related-key truncated differential in Fig. 2 is used for Eb and E0

in this attack).
The attack on 9-round AES-256 with four related keys recovers bytes 1, 2, 6,

7, 8, 11, 12, 13 of the whitening key quartet (Kw, K∗
w, K ′

w, K ′∗
w ) and bytes 0, 4,

8, 12 of the subkey quartet (K8, K
∗
8 , K ′

8, K
′∗
8 ) with a data complexity of about
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299 related-key chosen plaintexts, a time complexity of about 2120 encryptions
and a success rate of 0.9. See Figs. 5 and 6 for a schematic description of our
9-round AES-256 attack.

6 Comments on the 9-Round AES-192 Attack Presented
at Eurocrypt 2005

At Eurocrypt 2005, Biham, Dunkelman and Keller [6] presented a 9-round
AES-192 attack which requires 256 related keys, a data complexity of 286 related-
key chosen plaintexts and a time complexity of 2125 encryptions. However, we
have observed that there is some flaw in the key guessing step in their attack.
In order to complete their attack, we need to guess in addition 56 bits of the
subkey in the last round, hence the attack requires a larger time complexity of
2181 = 2125 · 256 rather than 2125 encryptions.

Moreover, their attack can be mounted based on 64 related keys as in our
10-round AES-192 attack. Similarly, it allows the 9-round AES-192 attack to work
with a smaller data complexity, but a larger time complexity than the original ones;
in our observation their attack works with 64 related keys, a data complexity of 285

related-key chosen plaintexts and a time complexity of 2182. This method (for re-
ducing the number of related keys) can also be used in the 10-roundAES-256 attack
presented at Eurocrypt 2005. See Table 1 for the attack complexity.

7 Conclusion

In this paper we have presented related-key rectangle attacks on 8-round AES-192
with 2 related keys, 10-round AES-192 with 64 or 256 related keys and 9-round
AES-256 with 4 related keys, which are faster than exhaustive key search. All our
attacks have been designed based on the key scheduling algorithms of AES-192
and AES-256 which have relatively slow difference propagations.

Our 10-round AES-192 attack leads to the best known attack on AES-192 and
our 8-round AES-192, 9-round AES-256 attacks are both better than previously
best known attacks on AES-192 with 2 related keys and AES-256 with 4 related
keys in terms of the number of attacked rounds and the data or time complexity.
It should be clear, however, that none of these attacks presents a realistic threat
to the security of the AES.

Acknowledgements. We thank Orr Dunkelman and Nathan Keller for their
helpful comments.
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