Skip to main content

Designing Electronic Circuits by Means of Gene Expression Programming II

  • Conference paper
Evolvable Systems: From Biology to Hardware (ICES 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4684))

Included in the following conference series:

Abstract

A major bottleneck in the evolutionary design of electronic circuits is the problem of scale. This refers to the very fast growth of the number of gates, used in the target circuit, as the number of inputs of the evolved logic function increases. Another related obstacle is the time required to calculate the fitness value of a circuit. In this paper, We propose a new means (Gene Expression Programming) for designing electronic circuits and introduces the encoding of the circuit as a chromosome, the genetic operators and the fitness function. From the case studies show this means has proved to be efficient to the electronic circuit and the evolution speed is fast .The experiments results show that we have attained the better results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zebulum, R.S., Pacheco, M.A., Vellasco, M.M.: Evolutionary Electronics: Automatic Design of Electronic Circuits and Systems by Genetic Algorithms. CRC Press, Boca Raton, USA (2001)

    Google Scholar 

  2. Thompson, A., Layzell, P.: Analysis of unconventional evolved electronics. Communications of the ACM 42, 71–79 (1999)

    Article  Google Scholar 

  3. Louis, S.J., Rawlins, G.J.: Designer Genetic Algorithms: Genetic Algorithms in Structure Design. In: Proceedings of the Fourth International Conference on Genetic Algorithms (1991)

    Google Scholar 

  4. Ferreira, C.: Gene Expression Programming: Anew adaptive Algorithm for solving Problems. Complex Systems 13, 87–129 (2001)

    MathSciNet  Google Scholar 

  5. Koza, J.R.: Genetic Programming. In: On the Programming of Computers by means of Natural Selection, MIT Press, Cambridge (1992)

    Google Scholar 

  6. Coello, C.A., Christiansen, A.D., Aguirre, A.H.: Using Genetic Algorithms to Design Combinational Logic Circuits. Intelligent Engineering through Artificial Neural Networks 6, 391–396 (1996)

    Google Scholar 

  7. Miller, J.F., Thompson, P., Fogarty, T.: Algorithms and Evolution Strategies in Engineering and Computer Science: Recent Advancements and Industrial Applications, ch. 6. Wiley, Chichester (1997)

    Google Scholar 

  8. Kalganova, T., Miller, J.F., Lipnitskaya, N.: Multiple_Valued Combinational Circuits Synthesised using Evolvable Hardware. In: Proceedings of the 7th Workshop on Post-Binary Ultra Large Scale Integration Systems (1998)

    Google Scholar 

  9. Torresen, J.: A Divide-and-Conquer Approach to Evolvable Hardware. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478, pp. 57–65. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Hollingworth, G.S., Smith, S.L., Tyrrell, A.M.: The Intrinsic Evolution of Virtex Devices Through Internet Reconfigurable Logic. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C. (eds.) ICES 2000. LNCS, vol. 1801, pp. 72–79. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Vassilev, V.K., Miller, J.F.: Scalability Problems of Digital Circuit Evolution. In: Proceedings of the Second NASA/DOD Workshop on Evolvable Hardware, pp. 55–64 (2000)

    Google Scholar 

  12. Gordon, T.G., Bentley, P.: Towards Development in Evolvable Hardware. In: Proceedings of the 2002 NASA/DOD Conference on Evolvable Hardware, pp. 241–250 (2002)

    Google Scholar 

  13. Miller, J.F.: Designing Electronic Circuits Using Evolutionary Algorithms, Dept. of Computer Studies, Napier University (2003)

    Google Scholar 

  14. Miller, J.F., Thomson, P.: CartesianGenetic Programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

    Google Scholar 

  15. Yan, X.S., Wei, W., et al.: Design Electronic Circuits by Means of Gene Expression Programming. In: Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems, pp. 194–199. IEEE Press, Los Alamitos (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lishan Kang Yong Liu Sanyou Zeng

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yan, X., Wei, W., Liang, Q., Hu, C., Yao, Y. (2007). Designing Electronic Circuits by Means of Gene Expression Programming II. In: Kang, L., Liu, Y., Zeng, S. (eds) Evolvable Systems: From Biology to Hardware. ICES 2007. Lecture Notes in Computer Science, vol 4684. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74626-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74626-3_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74625-6

  • Online ISBN: 978-3-540-74626-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics