Skip to main content

Designing Polymorphic Circuits with Evolutionary Algorithm Based on Weighted Sum Method

  • Conference paper
Evolvable Systems: From Biology to Hardware (ICES 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4684))

Included in the following conference series:

  • 627 Accesses

Abstract

Polymorphic circuit is a kind of multifunctional circuits that can perform two or more functions under different conditions. And those functions can be activated by changing control parameters, such as temperature, power supply voltage, illumination and so on. Polymorphic circuit provides a novel approach to build multifunctional circuits, and it can be used in many fields. However, polymorphic circuit can not be designed with conventional methods and is hard to be evolved with evolutionary algorithms directly. A novel evolutionary algorithm based on the weighted sum method is proposed in this paper, which can be used to evolve polymorphic circuits at gate level. The experimental results demonstrate that this algorithm can increase the success ratio and decrease the evolutionary generations needed to evolve a polymorphic circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Stoica, A., Zebulum, R., Keymeulen, D.: Polymorphic Electronics. In: Liu, Y., Tanaka, K., Iwata, M., Higuchi, T., Yasunaga, M. (eds.) ICES 2001. LNCS, vol. 2210, pp. 291–301. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Stoica, A., Zebulum, R., Keymeulen, D.: Evolvable Hardware Solutions for Extreme Temperature Electronics. In: Proc. of the Third NASA/DoD Workshop on Evolvable Hardware, vol. 93–97, IEEE, Los Alamitos (2001)

    Google Scholar 

  3. Stoica, A., Zebulum, R., Keymeulen, D.: On Polymorphic Circuits and Their Design Using Evolutionary Algorithms. In: AI 2002. Proceedings of IASTED International Conference on Applied Informatics, Innsbruck, Austrilia (2002)

    Google Scholar 

  4. Stoica, A., Zebulum, R., Keymeulen, D.: Taking Evolutionary Circuit Design from Experimentation to Implementation: Some Useful Techniques and a Silicon Demonstration. IEE Proceedings on Computers and Digital Techniques 151, 295–300 (2004)

    Article  Google Scholar 

  5. Stoica, A., Zebulum, R.S., Keymeulen, D., Ramesham, R.: Temperature-Adaptive Circuits on Reconfigurable Analog Arrays. In: Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems, Istanbul, Turkey, pp. 28–31 (2006)

    Google Scholar 

  6. Bidlo, M., Sekanina, L.: Providing Information from the Environment for Growing Electronic Circuits through Polymorphic Gates. In: Proceedings of Genetic and Evolutionary Computation Conference, New York, US, pp. 242–248 (2005)

    Google Scholar 

  7. Sekanina, L.: Evolutionary Design of Gate-Level Polymorphic Digital Circuits. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkkshops 2005. LNCS, vol. 3449, pp. 185–194. Springer, Heidelberg (2005)

    Google Scholar 

  8. Sekanina, L.: Design Methods for Polymorphic Digital Circuits. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkkshops 2005. LNCS, vol. 3449, pp. 185–190. Springer, Heidelberg (2005)

    Google Scholar 

  9. Sekanina, L., Martinek, T., Gajda, Z.: Extrinsic and Intrinsic Evolution of Multifunctional Combinational Modules. In: IEEE Congress on Evolutionary Computation (2006)

    Google Scholar 

  10. Sekanina, L., Starecek, L., Gajda, Z., Kotasek, Z.: Evolution of Multifunctional Combinational Modules Controlled by the Power Supply Voltage. In: Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems, Istanbul, Turkey, pp. 186–193 (2006)

    Google Scholar 

  11. Stoica, A., Keymeulen, D., Arslan, T.: Circuit Self-Recovery Experiments in Extreme Environments. In: Proceedings of 2004 NASA/DoD Conference on Evolvable Hardware, pp. 142–145 (2004)

    Google Scholar 

  12. Miller, T.: Cartesian Genetic Programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

    Google Scholar 

  13. Miller, J., Job, D.: Principles in the Evolutionary Design of Digital Circuits - Part I. Genetic Programming and Evolvable Machines 1, 7–35 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lishan Kang Yong Liu Sanyou Zeng

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liang, H., Luo, W., Wang, X. (2007). Designing Polymorphic Circuits with Evolutionary Algorithm Based on Weighted Sum Method. In: Kang, L., Liu, Y., Zeng, S. (eds) Evolvable Systems: From Biology to Hardware. ICES 2007. Lecture Notes in Computer Science, vol 4684. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74626-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74626-3_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74625-6

  • Online ISBN: 978-3-540-74626-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics