Skip to main content

Functional Modelling of Large Scattered Data Sets Using Neural Networks

  • Conference paper
Artificial Neural Networks – ICANN 2007 (ICANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4668))

Included in the following conference series:

  • 2783 Accesses

Abstract

We propose a self-organising hierarchical Radial Basis Function (RBF) network for functional modelling of large amounts of scattered unstructured point data. The network employs an error-driven active learning algorithm and a multi-layer architecture, allowing progressive bottom-up reinforcement of local features in subdivisions of error clusters. For each RBF subnet, neurons can be inserted, removed or updated iteratively with full dimensionality adapting to the complexity and distribution of the underlying data. This flexibility is particularly desirable for highly variable spatial frequencies. Experimental results demonstrate that the network representation is conducive to geometric data formulation and simplification, and therefore to manageable computation and compact storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Carr, J., Beatson, R., Cherrie, J., Mitchell, T., Fright, W., McCallum, B., Evans, T.: Reconstruction and representation of 3D objects with radial basis functions. In: ACM SIGGRAPH, pp. 67–76. ACM Press, New York (2001)

    Google Scholar 

  2. Ferrari, S., Maggioni, M., Borghese, N.A.: Multiscale approximation with hierarchical radial basis functions networks. IEEE Trans. on Neural Networks 15(1), 178–188 (2004)

    Article  Google Scholar 

  3. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32, 241–254 (1967)

    Article  Google Scholar 

  4. Karayiannis, N.: Reformulated radial basis neural networks trained by gradient descent. IEEE Trans. on Neural Networks 10(3), 657–671 (1999)

    Article  Google Scholar 

  5. Kojekine, N., Hagiwara, I., Savchenko, V.: Software tools using CSRBF for processing scattered data. Computer & Graphics 27(2), 463–470 (2003)

    Article  Google Scholar 

  6. Morse, B., Yoo, T., Rheingans, P., Chen, D.T., Subramanian, K.R.: Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions. In: Proceedings of Shape Modeling International (2001)

    Google Scholar 

  7. Platt, J.: A resource-allocating network for function interpolation. Neural Comput. 3(2), 213–225 (1991)

    Article  MathSciNet  Google Scholar 

  8. Simon, D.: Training radial basis neural networks with the extended Kalman filter. Neurocomputing 48, 455–475 (2002)

    Article  MATH  Google Scholar 

  9. Turk, G., O’Brien, J.: Modelling with implicit surfaces that interpolate. ACM Trans. on Graphics 21(4), 855–873 (2002)

    Article  Google Scholar 

  10. Varady, L., Hoffmann, M., Kovacs, E.: Improved free-form modelling of scattered data by dynamic neural networks. Journal for Geometry and Graphics 3(2), 177–181 (1999)

    MATH  Google Scholar 

  11. http://sampl.ece.ohio-state.edu/data/3ddb/rid/minolta , range image database at Ohio SAMPL

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joaquim Marques de Sá Luís A. Alexandre Włodzisław Duch Danilo Mandic

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meng, Q., Li, B., Costen, N., Holstein, H. (2007). Functional Modelling of Large Scattered Data Sets Using Neural Networks. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4668. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74690-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74690-4_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74689-8

  • Online ISBN: 978-3-540-74690-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics