Abstract
We propose a self-organising hierarchical Radial Basis Function (RBF) network for functional modelling of large amounts of scattered unstructured point data. The network employs an error-driven active learning algorithm and a multi-layer architecture, allowing progressive bottom-up reinforcement of local features in subdivisions of error clusters. For each RBF subnet, neurons can be inserted, removed or updated iteratively with full dimensionality adapting to the complexity and distribution of the underlying data. This flexibility is particularly desirable for highly variable spatial frequencies. Experimental results demonstrate that the network representation is conducive to geometric data formulation and simplification, and therefore to manageable computation and compact storage.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Carr, J., Beatson, R., Cherrie, J., Mitchell, T., Fright, W., McCallum, B., Evans, T.: Reconstruction and representation of 3D objects with radial basis functions. In: ACM SIGGRAPH, pp. 67–76. ACM Press, New York (2001)
Ferrari, S., Maggioni, M., Borghese, N.A.: Multiscale approximation with hierarchical radial basis functions networks. IEEE Trans. on Neural Networks 15(1), 178–188 (2004)
Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32, 241–254 (1967)
Karayiannis, N.: Reformulated radial basis neural networks trained by gradient descent. IEEE Trans. on Neural Networks 10(3), 657–671 (1999)
Kojekine, N., Hagiwara, I., Savchenko, V.: Software tools using CSRBF for processing scattered data. Computer & Graphics 27(2), 463–470 (2003)
Morse, B., Yoo, T., Rheingans, P., Chen, D.T., Subramanian, K.R.: Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions. In: Proceedings of Shape Modeling International (2001)
Platt, J.: A resource-allocating network for function interpolation. Neural Comput. 3(2), 213–225 (1991)
Simon, D.: Training radial basis neural networks with the extended Kalman filter. Neurocomputing 48, 455–475 (2002)
Turk, G., O’Brien, J.: Modelling with implicit surfaces that interpolate. ACM Trans. on Graphics 21(4), 855–873 (2002)
Varady, L., Hoffmann, M., Kovacs, E.: Improved free-form modelling of scattered data by dynamic neural networks. Journal for Geometry and Graphics 3(2), 177–181 (1999)
http://sampl.ece.ohio-state.edu/data/3ddb/rid/minolta , range image database at Ohio SAMPL
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Meng, Q., Li, B., Costen, N., Holstein, H. (2007). Functional Modelling of Large Scattered Data Sets Using Neural Networks. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4668. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74690-4_45
Download citation
DOI: https://doi.org/10.1007/978-3-540-74690-4_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74689-8
Online ISBN: 978-3-540-74690-4
eBook Packages: Computer ScienceComputer Science (R0)