Abstract
Parts-based recognition has been suggested for generalizing from few training views in categorization scenarios. In this paper we present the results of a comparative investigation of different feature types with regard to their suitability for category discrimination. So patches of gray-scale images were compared with SIFT descriptors and patches from the high-level output of a feedforward hierarchy related to the ventral visual pathway. We discuss the conceptual differences, resulting performance and consequences for hierarchical models of visual recognition.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tanaka, K.: Inferotemporal Cortex And Object Vision. Annual Review of Neuroscience 19, 109–139 (1996)
Tsunoda, K., Yamane, Y., Nishizaki, M., Tanifuji, M.: Complex objects are represented in inferotemporal cortex by the combination of feature columns. Nature Neuroscience 4(8), 832–838 (2001)
Wersing, H., Körner, E.: Learning Optimized Features for Hierarchical Models of Invariant Object Recognition. Neural Computation 15(7), 1559–1588 (2003)
Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust Object Recognition with Cortex-Like Mechanisms. IEEE Trans. Pattern Analysis and Machine Intelligence 29(3), 411–426 (2007)
Mel, B.W.: SEEMORE: Combining color, shape, and texture histogramming in a neurally inspired approach to visual object recognition. Neural Computation 9(4), 777–804 (1997)
Schiele, B., Crowley, J.L.: Object Recognition Using Multidimensional Receptive Field Histograms. In: European Conference on Computer Vision, pp. 1039–1046. Cambridge, UK (1996)
Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)
Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)
Hasler, S., Wersing, H., Körner, E.: Class-specific Sparse Coding for Learning of Object Representations. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 475–480. Springer, Heidelberg (2005)
Ullman, S., Vidal-Naquet, M., Sali, E.: Visual features of intermediate complexity and their use in classification. Nature Neuroscience Vision Research 5(7), 682–687 (2002)
Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)
Leibe, B., Schiele, B.: Scale-Invariant Object Categorization Using a Scale-Adaptive Mean-Shift Search. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) Pattern Recognition. LNCS, vol. 3175, pp. 145–153. Springer, Heidelberg (2004)
Dance, C., Willamowski, J., Fan, L., Bray, C., Csurka, G.: Visual categorization with bags of keypoints. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, Springer, Heidelberg (2004)
Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. IEEE Trans. Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)
Dorko, G., Schmid, C.: Object Class Recognition Using Discriminative Local Features. In: INRIA (2005)
Ullman, S., Bart, E.: Recognition invariance obtained by extended and invariant features. Neural Networks 17(1), 833–848 (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hasler, S., Wersing, H., Körner, E. (2007). A Comparison of Features in Parts-Based Object Recognition Hierarchies. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74695-9_22
Download citation
DOI: https://doi.org/10.1007/978-3-540-74695-9_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74693-5
Online ISBN: 978-3-540-74695-9
eBook Packages: Computer ScienceComputer Science (R0)