Skip to main content

Clustering Evaluation in Feature Space

  • Conference paper
Artificial Neural Networks – ICANN 2007 (ICANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4669))

Included in the following conference series:

  • 1941 Accesses

Abstract

Many clustering algorithms require some parameters that often are neither a priori known nor easy to estimate, like the number of classes. Measures of clustering quality can consequently be used to a posteriori estimate these values. This paper proposes such an index of clustering evaluation that deals with kernel methods like kernel-k-means. More precisely, it presents an extension of the well-known Davies & Bouldin’s index. Kernel clustering methods are particularly relevant because of their ability to deal with initially non-linearly separable clusters. The interest of the following clustering evaluation is then to get around the issue of the not explicitly known data transformation of such kernel methods. Kernel Davies & Bouldin’s index is finally used to a posteriori estimate the parameters of the kernel-k-means method applied on some toys datasets and Fisher’s Iris dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Girolami, M.: Mercer kernel-based clustering in feature space. IEEE Trans. on Neural Networks 13(3), 780–784 (2002)

    Article  Google Scholar 

  2. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond, Massachusetts, London, England. MIT Press, Cambridge (2002)

    Google Scholar 

  3. Jenssen, R., et al.: Some Equivalences Between Kernel Methods and Information Theoretic Methods. Journal of VLSI Signal Processing 45, 49–65 (2006)

    Article  Google Scholar 

  4. Christianini, N., Shawe-Taylore, J., Kandola, J.: Spectral kernel methods for clustering. Neural Information Processing Systems 14 (2002)

    Google Scholar 

  5. Su, M.-C., Chang, H.-T.: A new model of self-organizing neural networks and its application in data projection. IEEE trans. on Neural Network 12(1), 153–158 (2001)

    Article  Google Scholar 

  6. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  7. MacQueen, J.B.: Some Methods for classification and Analysis of Multivariate Observation. In: Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)

    Google Scholar 

  8. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  9. Roberts, S.J., Everson, R., Rezek, I.: Maximum Certainty Data Partitioning. Pattern Recognition 33(5), 833–839 (2000)

    Article  Google Scholar 

  10. Mao, J., Jain, A.K.: Artificial neural networks for features extraction and multivariate data projection. IEEE Trans. Neural Networks 6(2), 296–317 (1995)

    Article  Google Scholar 

  11. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Analysis Machine Intelligence 1(4), 224–227 (1979)

    Article  Google Scholar 

  12. Nasser, A., Hamad, D., Nasr, C.: Kernel PCA as a Visualization Tools for Clusters Identifications. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 321–329. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Fisher, R.A.: The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics 7, 179–188 (1936)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joaquim Marques de Sá Luís A. Alexandre Włodzisław Duch Danilo Mandic

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nasser, A., Hébert, PA., Hamad, D. (2007). Clustering Evaluation in Feature Space. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74695-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74695-9_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74693-5

  • Online ISBN: 978-3-540-74695-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics