Skip to main content

SimBa: A Fuzzy Similarity-Based Modelling Framework for Large-Scale Cerebral Networks

  • Conference paper
Artificial Neural Networks – ICANN 2007 (ICANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4669))

Included in the following conference series:

  • 1939 Accesses

Abstract

Motivated by a better understanding of cerebral information processing, a lot of work has been done recently in bringing together connectionist numerical models and symbolic cognitive frameworks, allowing for a better modelling of some cerebral mechanisms. However, a gap still exists between models that describe functionally small neural populations and cognitive architectures that are used to predict cerebral activity. The model presented here tries to fill partly this gap. It uses existing knowledge of the brain structure to describe neuroimaging data in terms of interacting functional units. Its merits rely on an explicit handling of neural populations proximity in the brain, relating it to similarity between the pieces of information processed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mesulam, M.: Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann. Neurol. 28, 597–613 (1990)

    Article  Google Scholar 

  2. Pernet, C., Schyns, P.G., Démonet, J.F.: Specific, selective or preferential: Comments on category specificity in neuroimaging. NeuroImage 35, 991–997 (2007)

    Article  Google Scholar 

  3. Friston, K.J.: Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping 2, 56–78 (1994)

    Article  Google Scholar 

  4. Sun, R., Alexandre, F. (eds.): Connectionist-Symbolic Integration: From Unified to Hybrid Approaches, Mahwah, NJ, USA. Lawrence Erlbaum Associates, Inc. (1997)

    Google Scholar 

  5. Anderson, J.R., Qin, Y., Jung, K.J., Carter, C.S.: Information-processing modules and their relative modality specificity. Cogn. Psych. 54, 185–217 (2007)

    Article  Google Scholar 

  6. Dayan, P., Abbot, L.: Theoretical Neuroscience: computational and mathematical modeling of neural systems. MIT Press, Cambridge (2005)

    Google Scholar 

  7. Mukamel, R., Gelbard, H., Arieli, A., Hasson, U., Fried, I., Malach, R.: Coupling between neuronal firing, field potentials, and fmri in human auditory cortex. Science 309, 951–954 (2005)

    Article  Google Scholar 

  8. Alexander, G., Delong, M., Crutcher, M.: Do cortical and basal ganglionic motor area use motor programs to control movement? Behav. Brain Sci 15, 656–665 (1992)

    Google Scholar 

  9. Tootell, R.B.H., Hadjikhani, N.K., Mendola, J.D., Marett, S., Dale, A.: From retinotopy to recognition: fmri in human visual cortex. Trends Cogn. Sci. 2(5), 174–182 (1998)

    Article  Google Scholar 

  10. Pastor, J., Lafon, M., Trave-Massuyes, L., Demonet, J.F., Doyon, B., Celsis, P.: Information processing in large-scale cerebral networks: the causal connectivity approach. Biol. Cybern 82(1), 49–59 (2000)

    Article  MATH  Google Scholar 

  11. Labatut, V., Pastor, J., Ruff, S., Demonet, J.F., Celsis, P.: Cerebral modeling and dynamic bayesian networks. Artificial Intelligence in Medicine 30(2), 119–139 (2004)

    Article  Google Scholar 

  12. Erny, J., Pastor, J., Prade, H.: A similarity and fuzzy logic-based approach to cerebral categorisation. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) Proc. of the 17th Euro. Conf. on Artificial Intelligence (ECAI’06), Riva del Garda, Italy, pp. 21–25. IOS Press, Amsterdam, Trento, Italy (2006), http://www.iospress.nl/

    Google Scholar 

  13. Zadeh, L.A.: Pruf–a meaning representation language for natural languages. International Journal of Man-Machine Studies 10(4), 395–460 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  14. Miller, E.K., Li, L., Desimone, R.: A neural mechanism for working and recognition memory in inferior temporal cortex. Science 254(5036), 1377–1379 (1991)

    Article  Google Scholar 

  15. Dubois, D., Prade, H., Yager, R.: Merging fuzzy information. In: Bezdek, J., Dubois, D., Prade, H. (eds.) Fuzzy sets in Approximate Reasoning and Information Systems. The Handbooks of Fuzzy Sets, Boston, Mass, USA, Kluwer, Dordrecht (1999)

    Google Scholar 

  16. McGurck, H., MacDonald, J.: Hearing lips and seeing voices. Nature 264, 246–248 (1976)

    Google Scholar 

  17. Fox, P., Raichle, M.: Stimulus rate dependence of regional brain blood flow in human striate cortex, demonstrated by positron emission tomography. J. Neurophy 51, 1109–1120 (1984)

    Google Scholar 

  18. O’Reilly, R.C.: Biologically based computational models of high-level cognition. Science 314(5796), 91–94 (2006)

    Article  MathSciNet  Google Scholar 

  19. Herd, S.A., Banich, M.T., O’Reilly, R.C.: Neural mechanisms of cognitive control: An integrative model of stroop task performance and fmri data. J. Cogn. Neurosci. 18(1), 22–32 (2006)

    Article  Google Scholar 

  20. van der Velde, F., de Kamps, M.: Neural blackboard architectures of combinatorial structures in cognition. The Behavioral and brain sciences 29, 37–108 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joaquim Marques de Sá Luís A. Alexandre Włodzisław Duch Danilo Mandic

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Erny, J., Pastor, J., Prade, H. (2007). SimBa: A Fuzzy Similarity-Based Modelling Framework for Large-Scale Cerebral Networks. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74695-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74695-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74693-5

  • Online ISBN: 978-3-540-74695-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics