Abstract
Motivated by a better understanding of cerebral information processing, a lot of work has been done recently in bringing together connectionist numerical models and symbolic cognitive frameworks, allowing for a better modelling of some cerebral mechanisms. However, a gap still exists between models that describe functionally small neural populations and cognitive architectures that are used to predict cerebral activity. The model presented here tries to fill partly this gap. It uses existing knowledge of the brain structure to describe neuroimaging data in terms of interacting functional units. Its merits rely on an explicit handling of neural populations proximity in the brain, relating it to similarity between the pieces of information processed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mesulam, M.: Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann. Neurol. 28, 597–613 (1990)
Pernet, C., Schyns, P.G., Démonet, J.F.: Specific, selective or preferential: Comments on category specificity in neuroimaging. NeuroImage 35, 991–997 (2007)
Friston, K.J.: Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping 2, 56–78 (1994)
Sun, R., Alexandre, F. (eds.): Connectionist-Symbolic Integration: From Unified to Hybrid Approaches, Mahwah, NJ, USA. Lawrence Erlbaum Associates, Inc. (1997)
Anderson, J.R., Qin, Y., Jung, K.J., Carter, C.S.: Information-processing modules and their relative modality specificity. Cogn. Psych. 54, 185–217 (2007)
Dayan, P., Abbot, L.: Theoretical Neuroscience: computational and mathematical modeling of neural systems. MIT Press, Cambridge (2005)
Mukamel, R., Gelbard, H., Arieli, A., Hasson, U., Fried, I., Malach, R.: Coupling between neuronal firing, field potentials, and fmri in human auditory cortex. Science 309, 951–954 (2005)
Alexander, G., Delong, M., Crutcher, M.: Do cortical and basal ganglionic motor area use motor programs to control movement? Behav. Brain Sci 15, 656–665 (1992)
Tootell, R.B.H., Hadjikhani, N.K., Mendola, J.D., Marett, S., Dale, A.: From retinotopy to recognition: fmri in human visual cortex. Trends Cogn. Sci. 2(5), 174–182 (1998)
Pastor, J., Lafon, M., Trave-Massuyes, L., Demonet, J.F., Doyon, B., Celsis, P.: Information processing in large-scale cerebral networks: the causal connectivity approach. Biol. Cybern 82(1), 49–59 (2000)
Labatut, V., Pastor, J., Ruff, S., Demonet, J.F., Celsis, P.: Cerebral modeling and dynamic bayesian networks. Artificial Intelligence in Medicine 30(2), 119–139 (2004)
Erny, J., Pastor, J., Prade, H.: A similarity and fuzzy logic-based approach to cerebral categorisation. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) Proc. of the 17th Euro. Conf. on Artificial Intelligence (ECAI’06), Riva del Garda, Italy, pp. 21–25. IOS Press, Amsterdam, Trento, Italy (2006), http://www.iospress.nl/
Zadeh, L.A.: Pruf–a meaning representation language for natural languages. International Journal of Man-Machine Studies 10(4), 395–460 (1978)
Miller, E.K., Li, L., Desimone, R.: A neural mechanism for working and recognition memory in inferior temporal cortex. Science 254(5036), 1377–1379 (1991)
Dubois, D., Prade, H., Yager, R.: Merging fuzzy information. In: Bezdek, J., Dubois, D., Prade, H. (eds.) Fuzzy sets in Approximate Reasoning and Information Systems. The Handbooks of Fuzzy Sets, Boston, Mass, USA, Kluwer, Dordrecht (1999)
McGurck, H., MacDonald, J.: Hearing lips and seeing voices. Nature 264, 246–248 (1976)
Fox, P., Raichle, M.: Stimulus rate dependence of regional brain blood flow in human striate cortex, demonstrated by positron emission tomography. J. Neurophy 51, 1109–1120 (1984)
O’Reilly, R.C.: Biologically based computational models of high-level cognition. Science 314(5796), 91–94 (2006)
Herd, S.A., Banich, M.T., O’Reilly, R.C.: Neural mechanisms of cognitive control: An integrative model of stroop task performance and fmri data. J. Cogn. Neurosci. 18(1), 22–32 (2006)
van der Velde, F., de Kamps, M.: Neural blackboard architectures of combinatorial structures in cognition. The Behavioral and brain sciences 29, 37–108 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Erny, J., Pastor, J., Prade, H. (2007). SimBa: A Fuzzy Similarity-Based Modelling Framework for Large-Scale Cerebral Networks. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74695-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-74695-9_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74693-5
Online ISBN: 978-3-540-74695-9
eBook Packages: Computer ScienceComputer Science (R0)