Skip to main content

Personalized Web Page Filtering Using a Hopfield Neural Network

  • Conference paper
Artificial Neural Networks – ICANN 2007 (ICANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4669))

Included in the following conference series:

  • 1942 Accesses

Abstract

The immense amount of unstructured information available on the Web poses increasing difficulties to fulfill users’ needs. New tools are needed to automatically collect and filter information that meets users’ demands. This paper presents the architecture of a personal information agent that mines web sources and retrieves documents according to users’ interests. The agent operates in two modes: "generation of space of concepts" and "document filtering". A space of concepts for a domain is represented by a matrix of asymmetrical coefficients of similarity for each pair of relevant terms in the domain. This matrix is seen as a Hopfield neural network, used for document filtering, where terms represent neurons and the coefficients of similarity the weights of the links that connect the neurons. Experiments conducted to evaluate the approach show that it exhibits satisfactory effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adán-Coello, J.M., Tobar, C.M., Freitas, R.L., Marin, A.: Hopfilter: an agent for filtering Web pages based on the Hopfield artificial neural network model, 24th British National Conference on Databases (2007)

    Google Scholar 

  • Chen, H., Hsu, P., Orwig, R., Hoopes, I., Nunamaker, J.F.: Automatic Concept Classification of Text from Electronic Meetings. Communications of the ACM 37(10), 56–73 (1994)

    Article  Google Scholar 

  • Chen, H., Zhang, Y., Houston, A.L.: Semantic Indexing and Searching Using a Hopfield Net. Journal of Information Science 24(1), 18–33 (1998)

    Article  Google Scholar 

  • Hopfield, J.J.: Neural Network and Physical Systems with Collective Computational Abilities. In: Proceedings of the National Academy of Science, USA, 79(4), pp. 2554-2558, 1982.

    Google Scholar 

  • Paice, C.D.: Another Stemmer. SIGIR Forum 24(3), 56–61 (1990)

    Article  Google Scholar 

  • Rijsbergen, C.J.: Information Retrieval. Butterworths, London (1979)

    Google Scholar 

  • Salton, G., McGill, M.J.: The SMART and SIRE Experimental Retrieval Systems. In: Readings in Information Retrieval, pp. 381–399. Morgan Kaufmann Publishers, Pine Street, Sixth Floor. San Francisco (1997)

    Google Scholar 

  • Vallim, M.S., Adán Coello, J.M.: An Agent for Web Information Dissemination Based on a Genetic Algorithm. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, October 5-8, IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  • Yan, T.W., Garcia-Molina, H.: The SIFT Information Dissemination System. ACM Transactions on Database Systems 24(4), 529–565 (1999)

    Article  Google Scholar 

  • Luhn, H.P.: A business intelligence system. IBM Journal of Research and Development 2(4), 314–319 (1958)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joaquim Marques de Sá Luís A. Alexandre Włodzisław Duch Danilo Mandic

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marin, A., Adán-Coello, J.M., Rosa, J.L.G., Tobar, C.M., de Freitas, R.L. (2007). Personalized Web Page Filtering Using a Hopfield Neural Network. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74695-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74695-9_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74693-5

  • Online ISBN: 978-3-540-74695-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics