Skip to main content

Lateral and Elastic Interactions: Deriving One Form from Another

  • Conference paper
Artificial Neural Networks – ICANN 2007 (ICANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4669))

Included in the following conference series:

  • 1879 Accesses

Abstract

Lateral and elastic interactions are known to build a topology in different systems. We demonstrate how the models with weak lateral interactions can be reduced to the models with corresponding weak elastic interactions. Namely, the batch version of soft topology-preserving map can be rigorously reduced to the elastic net. Owing to the latter, both models produce similar behaviour when applied to the TSP. Unlike, the incremental (online) version of soft topology-preserving map is reduced to the cortical map only in the limit of low temperature, which makes their behaviours different when applied to the ocular dominance formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Computation. Addison-Wesley, Reading, London, UK (1991)

    Google Scholar 

  2. Kohonen, T.: Self-Organized Formation of Topologically Correct Feature Maps. Biological Cybernetics 43, 59–69 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Durbin, R., Willshaw, D.: An Analogue Approach to the Travelling Salesman Problem Using an Elastic Net Method. Nature 326, 689–691 (1987)

    Article  Google Scholar 

  4. Durbin, R., Mitchison, G.: A Dimension Reduction Framework for Understanding Cortical Maps. Nature 343, 644–647 (1990)

    Article  Google Scholar 

  5. Tereshko, V.: Topology-Preserving Elastic Nets. In: Mira, J.M., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2084, pp. 551–557. Springer, Heidelberg (2001)

    Google Scholar 

  6. Tereshko, V., Allinson, N.M.: Combining Lateral and Elastic Interactions: Topology-Preserving Elastic Nets. Neural Processing Letters 15, 213–223 (2002)

    Article  MATH  Google Scholar 

  7. Tereshko, V.: Modelling Topology Preservation in a Cortex by Controlled Deformation of Its Energy Landscape. Neurocomputing 44-46C, 667–672 (2002)

    Article  Google Scholar 

  8. Tereshko, V.: Deriving cortical maps and elastic nets from topology-preserving maps. In: Cabestany, J., Priet, A., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 326–332. Springer, Heidelberg (2005)

    Google Scholar 

  9. Graepel, T., Burger, M., Obermayer, K.: Phase Transitions in Stochastic Self-Organizing Maps. Phys. Rev. E 56, 3876–3890 (1997)

    Article  Google Scholar 

  10. Heskes, T.: Energy Functions for Self-Organizing Maps. In: Oja, E., Kaski, S. (eds.) Kohonen Maps, pp. 303–315. Elsevier, Amsterdam (1999)

    Google Scholar 

  11. Goodhill, G.J. (ed.): Correlations, Competition, and Optimality: Modelling the Development of Topography and Ocular Dominance. Cognitive Science Research Paper 226. University of Sussex, Brighton (1992)

    Google Scholar 

  12. Swindale, N.V.: The Development of Topography in the Visual Cortex: a Review of Models. Comput. Neur. Syst. 7, 161–247 (1996)

    Article  MATH  Google Scholar 

  13. Mitchison, G.: Neuronal Branching Patterns and the Economy of Cortical Wiring. Proc. Roy. Soc. B. 245, 151–158 (1991)

    Article  Google Scholar 

  14. Simic, P.D.: Statistical Mechanics as the Underlying Theory of “Elastic” and “Neural” Optimisations. Network: Comput. Neur. Syst. 1, 89–103 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. van den Berg, J.: Neural Relaxation Dynamics: Mathematics and Physics of Recurrent Neural Networks with Applications in the Field of Combinatorial Optimization. PhD Thesis. Erasmus University, Rotterdam (1996)

    Google Scholar 

  16. Folk, R., Kartashov, A.: A simple elastic model for self-organizing topological mappings. Network. Computation in Neural Systems 5, 369–387 (1994)

    Article  MATH  Google Scholar 

  17. Wong, Y.: A Comparative study of the Kohonen self-organizing map and the elastic net. In: Hanson, S.J., Petsche, T., Kearns, M., Rivest, R.L. (eds.) Computational Learning Theory and Natural Learning Systems, vol. 2, pp. 401–413. MIT, Cambridge (1994)

    Google Scholar 

  18. Mitchison, G.: A Type of duality between self-organizing maps and minimal wiring. Neural Computation 7, 25–35 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joaquim Marques de Sá Luís A. Alexandre Włodzisław Duch Danilo Mandic

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tereshko, V. (2007). Lateral and Elastic Interactions: Deriving One Form from Another. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74695-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74695-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74693-5

  • Online ISBN: 978-3-540-74695-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics