Abstract
A procedure to estimate the parameters of GARCH processes with non-parametric innovations is proposed. We also design an improved technique to estimate the density of heavy-tailed distributions with real support from empirical data. The performance of GARCH processes with non-parametric innovations is evaluated in a series of experiments on the daily log-returns of IBM stocks. These experiments demonstrate the capacity of the improved estimator to yield a precise quantification of market risk.
This work has been supported by Consejería de Educació n de la Comunidad Autónoma de Madrid, European Social Fund, Universidad Autónoma de Madrid and Dirección General de Investigació n under project TIN2004-07676-C02-02.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dowd, K.: Measuring Market Risk. John Wiley & Sons, Chichester (2005)
Campbell, J.Y., Lo, A.W., MacKinlay, A.C.: The Econometrics of Financial Markets. Princeton University Press, Princeton (1997)
Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31(3), 307–327 (1986)
Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (1994)
Cont, R.: Empirical properties of asset returns: stylized facts and statistical issues. Journal of Quantitative Finance 1, 223–236 (2001)
Ding, Z., C.W.J.G., Engle, R.F.: A long memory property of stock market returns and a new model. Journal of Empirical Finance 1(1), 83–106 (1993)
Nolan, J.P: Stable Distributions. Birkhäuser, Basel (2002)
Devroye, L., Gyrfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition (Stochastic Modelling and Applied Probability). Springer, Heidelberg (1997)
Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC (1986)
Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford, UK (1995)
Wand, M.P., Marron, J.S., Ruppert, D.: Transformations in density estimation. with discussion and a rejoinder by the authors. Journal of the American Statistical Association 86(414), 343–361 (1991)
Barndorff-Nielsen, O.E.: Normal inverse gaussian distributions and stochastic volatility modelling. Scandinavian Journal of Statistics 24(1), 1–13 (1997)
Eberlein, E., Keller, U.: Hyperbolic distributions in finance. Bernoulli 1(3), 281–299 (1995)
Prause, K.: The generalized hyperbolic model: Estimation, financial derivatives and risk measures. PhD Dissertation, University of Freiburg (1999)
Kerkhof, J., Melenberg, B.: Backtesting for risk-based regulatory capital. Journal of Banking & Finance 28(8), 1845–1865 (2004)
R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0 (2005)
Mittnik, S., D.T., D., C.: Computing the probability density function of the stable paretian distribution. Mathematical and Computer Modelling 29(10), 235–240 (1997)
Wuertz, D., Others, M.: fBasics: Financial Software Collection - fBasics (2004)
Longin, F.M.: The asymptotic distribution of extreme stock market returns. The Journal of Business 69(3), 383–408 (1996)
Dennis, W., Jansen, C.G.d.v.: On the frequency of large stock returns: Putting booms and busts into perspective. The Review of Economics and Statistics 73(1), 18–24 (1991)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hernández-Lobato, J.M., Hernández-Lobato, D., Suárez, A. (2007). GARCH Processes with Non-parametric Innovations for Market Risk Estimation. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74695-9_74
Download citation
DOI: https://doi.org/10.1007/978-3-540-74695-9_74
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74693-5
Online ISBN: 978-3-540-74695-9
eBook Packages: Computer ScienceComputer Science (R0)