Abstract
This work evaluates two artificial intelligence techniques for file distribution in Grid environments. These techniques are used to access data on independent servers in parallel, in order to improve the performance and maximize the throughput rate. In this work, genetic algorithms and Hopfield neural networks are the techniques used to solve the problem. Both techniques are evaluated for efficiency and performance. Experiments were conduced in environments composed of 32, 256 and 1024 distributed nodes. The results allow to confirm the decreasing in the file access time and that Hopfield neural network offered the best performance, being possible to be applied on Grid environments.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Stockinger, H., Samar, A., Allcock, B., Foster, I., Holtman, K., Tierney, B.: File and object replication in data grids (2001)
Semenov, M.A., Terkel, D.A.: Analysis of convergence of an evolutionary algorithm with self-adaptation using a stochastic lyapunov function. Evol. Comput. 11, 363–379 (2003)
Haykin, S.: Neural Networks - A Compreensive Foundation. Prentice-Hall, Englewood Cliffs (1994)
Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Neurocomputing: foundations of research, 457–464 (1988)
Freedman, C.S., Burger, J., Dewitt, D.J.: SPIFFI — a scalable parallel file system for the Intel Paragon. IEEE Transactions on Parallel and Distributed Systems 7, 1185–1200 (1996)
Huber Jr., J.V., Elford, C.L., Reed, D.A., Chien, A.A, Blumenthal, D.S.: PPFS: A high performance portable parallel file system. In: Jin, H., Cortes, T., Buyya, R. (eds.) High Performance Mass Storage and Parallel I/O: Technologies and Applications, pp. 330–343. IEEE Computer Society Press and Wiley, New York (2001)
Guardia, H.C.: Considerações sobre as estratégias de um Sistema de Arquivos Paralelos integrado ao processamento distribuído. PhD thesis, EPUSP (1999)
Carns, P.H., Ligon III, W.B., Ross, R.B., Thakur, R.: PVFS: A parallel file system for linux clusters. In: Proceedings of the 4th Annual Linux Showcase and Conference, Atlanta, GA, USENIX Association, pp. 317–327 (2000)
Dodonov, E.: Um mecanismo integrado de Cache e Prefetching para sistemas de entrada e saída de alto desempenho. Master’s thesis, DC/UFSCar (2004)
OpenAfs: http://www.openafs.org/
Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the Grid: Enabling scalable virtual organizations. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, p. 1. Springer, Heidelberg (2001)
Datafarm, U.G.: Building a high performance parallel file system
GSI-SFS: http://www.biogrid.jp/e/research_work/gro1/gsi_sfs/
Foster, I., Kesselman, C.: Globus: A metacomputing infrastructure toolkit. The International Journal of Supercomputer Applications and High Performance Computing 11, 115–128 (1997)
Gnutella protocol: http://rfc-gnutella.sourceforge.net/
FastTrack protocol: http://en.wikipedia.org/wiki/FastTrack
eDonkey protocol: http://wiki.tcl.tk/11094
BitTorrent protocol: http://www.bittorrent.com/protocol.html
Overnet network: http://en.wikipedia.org/wiki/Overnet
E., D., F., M.R., T., Y.L.: A network evaluation for lan, man and wan grid environments. In: Yang, L.T., Amamiya, M., Liu, Z., Guo, M., Rammig, F.J. (eds.) EUC 2005. LNCS, vol. 3824, Springer, Heidelberg (2005)
Shefler, W.C.: Statistics: Concepts and Applications. Benjamin, Cummings (1988)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de Mello, R.F., Andrade Filho, J.A., Dodonov, E., Porfirio Ishii, R., Yang, L.T. (2007). Optimizing Distributed Data Access in Grid Environments by Using Artificial Intelligence Techniques. In: Stojmenovic, I., Thulasiram, R.K., Yang, L.T., Jia, W., Guo, M., de Mello, R.F. (eds) Parallel and Distributed Processing and Applications. ISPA 2007. Lecture Notes in Computer Science, vol 4742. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74742-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-74742-0_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74741-3
Online ISBN: 978-3-540-74742-0
eBook Packages: Computer ScienceComputer Science (R0)