Skip to main content

An Incremental Distributed Algorithm for a Partial Grundy Coloring of Graphs

  • Conference paper
Parallel and Distributed Processing and Applications (ISPA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4742))

  • 768 Accesses

Abstract

A coloring of a graph G = (V,E) is a partition of {V 1,V 2 ⋯ V k } of V into k independent sets called color classes. A vertex v ∈ V i is called a Grundy vertex if it is adjacent to at least one vertex in color class V j , for every j < i. In the partial Grundy coloring, every color class contains at least one Grundy vertex. Such a coloring gives a partitioning of the graph into clusters for which every cluster has a clusterhead (the Grundy vertex) adjacent to some other clusters. Such a decomposition is very interesting for large distributed systems and networks. In this paper, we propose a distributed algorithm to maintain the partial Grundy coloring of any graph G when an edge is added

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonoiu, G., Srimani, P.K.: A self-stabilizing distributed algorithm for minimal spanning tree problem in a symmetric graph. Computer & Mathematics with Application 35(10), 15–23 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bui, M., Butelle, F., Lavault, C.: A distributed algorithm for constructing a minimum diameter spanning tree. Journal of Parallel and Distributed Computing 64, 571–577 (2004)

    Article  MATH  Google Scholar 

  3. Christen, C.A., Selkow, S.M.: Some perfect coloring properties of graphs. Journal of Combinatorial Theory B27, 49–59 (1979)

    Article  MathSciNet  Google Scholar 

  4. Cockayne, E.J., Thommason, A.G.: Ordered Colourings of graphs. Journal of Combinatorial Theory B32, 286–292 (1982)

    Article  Google Scholar 

  5. Effantin, B., Kheddouci, H.: Grundy number of graphs. Discussiones Mathematicae Graph Theory 27(1), 5–18 (2007)

    MATH  MathSciNet  Google Scholar 

  6. Effantin, B., Kheddouci, H.: A Distributed Algorithm for a b-Coloring of a Graph. In: Guo, M., Yang, L.T., Di Martino, B., Zima, H.P., Dongarra, J., Tang, F. (eds.) ISPA 2006. LNCS, vol. 4330, pp. 430–438. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Erdös, P., Hare, W.R., Hedetniemi, S.T., Laskar, R.: On the equality of the Grundy and ochromatic numbers of a graph. Journal of Graph Theory 11(2), 157–159 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Erdös, P., Hedetniemi, S.T., Laskar, R.C., Prins, G.C.E.: On the equality of the partial Grundy and upper ochromatic numbers of graphs. Discrete Mathematics 272, 53–64 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fujie, T.: An exact algorithm for the maximum leaf spanning tree problem. Computers & Operations Research 30, 1931–1944 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Germain, C., Kheddouci, H.: Grundy numbers of powers of graphs. Discrete Mathematics (to appear)

    Google Scholar 

  11. Hedetniemi, S.M., Hedetniemi, S.T., Beyer, T.: A linear algorithm for the Grundy (coloring) number of a tree. Congressus Numerantium 36, 351–363 (1982)

    MathSciNet  Google Scholar 

  12. Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Linear time self-stabilizing colorings. Information Processing Letters 87, 251–255 (2003)

    Article  MathSciNet  Google Scholar 

  13. Huang, S.-T., Hung, S.-S., Tzeng, C.-H.: Self-stabilizing coloration in anonymous planar networks. Information Processing Letters 95, 307–312 (2005)

    Article  MathSciNet  Google Scholar 

  14. Shi, Z., Goddard, W., Hedetniemi, S.T., Kennedy, K., Laskar, R., MacRae, A.: An algorithm for partial Grundy number on trees. Discrete Mathematics 304, 108–116 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Shi, Z., Goddard, W., Hedetniemi, S.T.: An anonymous self-stabilizing algorithm for 1-maximal independent set in trees. Information Processing Letters 91, 77–83 (2004)

    Article  MathSciNet  Google Scholar 

  16. Šparl, P., Žerovnik, J.: 2-local distributed algorithms for generalized coloring of hexagonal graphs. Electronic notes in Discrete Mathematics 22, 321–325 (2005)

    Article  Google Scholar 

  17. Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on partial k-trees. SIAM Journal on Discrete Mathematics 10(4), 529–550 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ivan Stojmenovic Ruppa K. Thulasiram Laurence T. Yang Weijia Jia Minyi Guo Rodrigo Fernandes de Mello

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dekar, L., Effantin, B., Kheddouci, H. (2007). An Incremental Distributed Algorithm for a Partial Grundy Coloring of Graphs. In: Stojmenovic, I., Thulasiram, R.K., Yang, L.T., Jia, W., Guo, M., de Mello, R.F. (eds) Parallel and Distributed Processing and Applications. ISPA 2007. Lecture Notes in Computer Science, vol 4742. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74742-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74742-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74741-3

  • Online ISBN: 978-3-540-74742-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics