Abstract
A Molecular Dynamics (MD) system is defined by the position and momentum of particles and their interactions. The dynamics of a system can be evaluated by an N-body problem and the simulation is continued until the energy reaches equilibrium. Thus, solving the dynamics numerically and evaluating the interaction is computationally expensive even for a small number of particles in the system. We are focusing on long-ranged interactions, since the calculation time is O(N2) for an N particle system. There are many existing algorithms aimed at reducing the calculation time of MD simulations. Multigrid (MG) method [1] reduces O(N2) calculation time to O(N) time while still achieving reasonable accuracy. Another movement to achieve much faster calculation time is running MD simulation on special purpose processors and customized hardware with ASICs or FPGAs. In this paper, we design and implement an FPGA-based MD simulator with an efficient MG method.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Rapaport, D.C.: The Art of Molecular Dynamics Simulation. Cambridge Univ. Press, Cambridge (1995)
Skeel, R.D., Texcan, I.: Multiple Grid methods for Classical molecular Dynamics. J. Comput. Chem. (2002)
Izaguirre, J.A., Matthey, T.: Parallel multigrid summation of the N-body problem (2004)
Rankin, W., Board, J.: A Portable Distributed Implementation of the Parallel Multipole Tree Algorithm. In: Proceedings IEEE Symposium on High Performance Distributed Computing (1995)
Banerjee, S., Board Jr., J.A.: Efficient charge assignment and back interpolation in multigrid methods for molecular dynamics. Journal of Computational Chemistry, 26–29 (2005)
Sagui, C., Darden, T.: Multigrid methods for classical molecular dynamics simulations of biomolecules. Journal of Chemical Physics (2006)
Ewald, P.P.: Ann. Phys. Leipzig IV, 253 (1920)
Beckers, J., Lowe, C.P, De Leeuw, S.W.: Mol. Simul. 20, 369 (1998)
York, D., Yang, W.: The fast fourier poisson method for calculating ewald sums. J. Chem. Phys. (1994)
Briggs, E.L., Sullivan, D.J., Bernholc: Real-space multigrid-based approach to large-scale electronic structure calculations. Physical Review B 54(20) (1996)
Matthey, T., Izaquirre, J.: ProtoMol: A molecular dynamics framework with incremental parallelization. In: Proc. 10th SIAM Conference on Parallel Processing for Scientific Computing (2001)
Bernard, P., Gautier, T.: Large scale simulation of parallel molecular dynamics, Parallel and Distributed Processing. In: 13th International and 10th Symposium on Parallel and Distributed Processing (1999)
Sagui, C., Darden, T.A.: MOLECULAR DYNAMICS SIMULATIONS OF BIOMOLECULES: Long-Range Electrostatic Effects. Annual Review of Biophysics and Biomolecular Structure (1999)
Kaviani, A., Rown, S.: Hybrid FPGA architecture. In: Fourth International ACM Symposium on Field-Programmable Gate Arrays, pp. 3–9 (1996)
Komeiji, Y., Yokoyama, H., Uebayasi, M., Taiji, M., et al.: A high performance system for molecular dynamics simulation of biomolecules using a special-purpose computer. Journal of Computational Chemistry 20(2), 185–199 (1999)
Komeiji, Y., Uebayasi, M., Takata, R., Shimizu, A., Itsukashi, K., Taiji, M.: Fast and accurate molecular dynamics simulation of a protein using a special-purpose computer. Journal of Computational Chemistry 18(12) (1998)
Toyoda, S., Miyagawa, H., kitamura, K.: Development of MD Engine: High-Speed Accelerator with Parallel Processor Design for Molecuclar Dynamics Simulations. Journal of Computational Chemistry 20(2), 185–199 (1999)
Azizi, N., Kuon, I., Egier, A., Darabiha, A., Chow, P.: Reconfigurable Molecular Dynamics Simlator. In: 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM 2004), pp. 197–206 (2004)
Gu,Y., Tom, V., Martin, C.: Herbordt: Accelerating Molecular Dynamics Simulations with Configurable Circuits. IEEE Proceedings on Computers & Digital Techniques (2006)
Amisaki, T., Fujiwara, T., Kusumi, A., Miyagawa, H., Kiamura, K.: Error evaluation in the design of a special-purpose processor that calculates nonbonded forces in molecular dynamics simulation. Journal of computational chemistry 16(9), 1120–1130 (1995)
Vaidyanathan, R., Trahan, J.L.: Dynamic Reconfiguration. Springer, Heidelberg (2004)
Cho, E., Bourgeois, A.G.: Multi-level Charge Assignment for Accurate and Efficient Molecular Dynamics (MD) Simulation. In: International Modeling and Simulation Multiconference (2007)
TM – 3 documentation, http://www.eecg.utoronto.ca/~tm3/
Allen, M.P., Tildesleley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (1987)
Amisaki, T., Fujiwara, T., Kusumi, A., et al.: Error evaluation in the design of a special-purpose processor that calculates nonbonded forces in molecular. Journal of computational chemistry 16(9), 1120–1130 (1995)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cho, E., Bourgeois, A.G., Tan, F. (2007). An FPGA Design to Achieve Fast and Accurate Results for Molecular Dynamics Simulations. In: Stojmenovic, I., Thulasiram, R.K., Yang, L.T., Jia, W., Guo, M., de Mello, R.F. (eds) Parallel and Distributed Processing and Applications. ISPA 2007. Lecture Notes in Computer Science, vol 4742. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74742-0_25
Download citation
DOI: https://doi.org/10.1007/978-3-540-74742-0_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74741-3
Online ISBN: 978-3-540-74742-0
eBook Packages: Computer ScienceComputer Science (R0)