

Bani-Mohammad, S. and Ould-Khaoua, M. and Abaneh, I. and
Mackenzie, L.M. (2007) A performance comparison of the contiguous
allocation strategies in 3D mesh connected multicomputers. Lecture
Notes in Computer Science 4742:pp. 645-656.

http://eprints.gla.ac.uk/3736/

A Performance Comparison of the Contiguous
Allocation Strategies in 3D Mesh Connected

Multicomputers

S. Bani-Mohammad1, M. Ould-Khaoua1, I. Ababneh2 and Lewis M. Mackenzie1
1Department of Computing Science

University of Glasgow, Glasgow G12 8QQ, UK.
{saad, mohamed, lewis}@dcs.gla.ac.uk

2Department of Computing Science

Al al-Bayt University, Mafraq, Jordan.
ismail@aabu.edu.jo

Abstract. The performance of contiguous allocation strategies can be
significantly affected by the distribution of job execution times. In this paper,
the performance of the existing contiguous allocation strategies for 3D mesh
multicomputers is re-visited in the context of heavy-tailed distributions (e.g., a
Bounded Pareto distribution). The strategies are evaluated and compared using
simulation experiments for both First-Come-First-Served (FCFS) and Shortest-
Service-Demand (SSD) scheduling strategies under a variety of system loads
and system sizes. The results show that the performance of the allocation
strategies degrades considerably when job execution times follow a heavy-
tailed distribution. Moreover, SSD copes much better than FCFS scheduling
strategy in the presence of heavy-tailed job execution times. The results also
show that the strategies that depend on a list of allocated sub-meshes for both
allocation and deallocation have lower allocation overhead and deliver good
system performance in terms of average turnaround time and mean system
utilization.

1 Introduction

The mesh has been one of the most common networks for recent multicomputers due
to its simplicity, scalability, structural regularity, and ease of implementation [1, 6,
12]. Meshes are suited to a variety of applications including matrix computation,
image processing and problems whose task graphs can be embedded naturally into the
topology [25].

Efficient processor allocation and job scheduling are critical to harnessing the full
computing power of a multicomputer [1, 4, 5, 28]. The goal of job scheduling is to
select the next job to be executed while the goal of processor allocation is to select the
set of processors on which parallel jobs are executed [1].

In distributed memory multicomputers, jobs are allocated distinct contiguous
processor sub-meshes for the duration of their execution [1, 4, 5, 6, 7, 12, 28, 29].

Most existing research studies [1, 4, 6, 11, 12, 29] on contiguous allocation have been
carried out mostly in the context of the 2D mesh network. There has been relatively
very little work on the 3D version of the mesh. Although the 2D mesh has been used
in a number of parallel machines, such as iWARP [2] and Delta Touchstone [8], most
practical multicomputers, like the Cray XT3 [3], Cray T3D [19], and the IBM
BlueGene/L [14], have used the 3D mesh and torus as the underlying network
topology due to its lower diameter and average communication distance [27].

Most existing contiguous allocation strategies for the 3D mesh, mainly the early
ones, have time complexities that grow linearly with the size of the mesh [5, 7, 28].
The recent contiguous allocation strategies have time complexities that can be less
sensitive to the size of the mesh [20, 23]. They build lists of the busy sub-meshes with
the goal of achieving time complexities that depend on the number of allocated sub-

meshes instead of the mesh size [20, 23]. Time complexities in)(2mO , where m is

the number of allocated sub-meshes in the busy list, were achieved [20, 23]. An
advantage of the busy-list approach is that the list of busy sub-meshes is often small
even when the mesh size becomes large, which decreases the allocation overhead.

The efficacy of most contiguous allocation strategies has been assessed under the
assumption of exponentially distributed execution times [4, 5, 6, 7, 11, 12, 20, 23, 28,
29], which may not reflect all possible practical scenarios. For instance, a number of
measurement studies [9, 15, 16, 17, 26] have convincingly shown that the execution
times of many computational jobs are characterised by heavy-tailed execution times;
that is, there are typically many short jobs, and fewer long jobs. Heavy-tailed
distributions capture this variability and behave quite differently from the
distributions more commonly used to evaluate the performance of allocation
strategies (e.g., the exponential distribution). In particular, when sampling random
variables that follow heavy-tailed distributions, the probability of large observations
occurring is non-negligible.

In this paper, the performance of the existing contiguous allocation strategies for
3D mesh-connected multicomputers is revisited in the context of heavy-tailed job
execution times. Existing strategies were typically evaluated with the assumption of
First-Come-First-Served (FCFS) job scheduling. In this paper, a Shortest-Service-
Demand (SSD) scheduling strategy is also used because it is expected to reduce
performance loss due to blocking. This strategy was found to improve performance
significantly [10, 21, 22]. Also in this paper, the performance of allocation strategies
is measured in terms of usual performance parameters [4, 5, 6, 7, 20, 21, 22, 23, 24,
28, 29] such as the average turnaround time and mean system utilization. Algorithmic
efficiency is measured in terms of the mean measured allocation overhead that
allocation and deallocation operations take per job. The results show that the
performance of the allocation strategies degrades when the distribution of job
execution times is heavy-tailed. As a consequence, an appropriate scheduling strategy
should be adopted to deal with heavy-tailed execution times. Our analysis reveals that
the SSD scheduling strategy exhibits superior performance than the FCFS scheduling
strategy in terms of average turnaround time and mean system utilization.

The rest of the paper is organised as follows. The following section contains
relevant preliminaries. Section 3 contains a brief overview of the allocation strategies
compared in this study. Section 4 contains a brief overview of the scheduling

strategies considered. Simulation results are presented in Section 5, and Section 6
concludes this paper.

2 Preliminaries

The target system is a HDW ×× 3D mesh, where W is the width of the cubic mesh,
D its depth and H its height. Each processor is denoted by a coordinate
triple),,(zyx , where Wx <≤0 , Dy <≤0 and Hz <≤0 [24]. A processor is

connected by bidirectional communication links to its neighbour processors. The
following definitions have been adopted from [4, 24].

Definition 1: A sub-mesh),,(hdwS of width w , depth d , and height h , where

Ww ≤<0 , Dd ≤<0 and Hh ≤<0 is specified by the coordinates),,(zyx and

),,(zyx ′′′ , where),,(zyx are the coordinates of the base of the sub-mesh and

),,(zyx ′′′ are the coordinates of its end, as shown in Fig. 1.

Definition 2: The size of),,(hdwS is hdw ×× .

Definition 3: An allocated sub-mesh is one whose processors are all allocated to a
parallel job.

Definition 4: A free sub-mesh is one whose processors are all unallocated.

Definition 5: The list of all sub-meshes that are currently allocated to jobs and are
not available for allocation to other jobs is called the busy list.

Definition 6: A prohibited region is a region consisting of nodes that can not be used
as base nodes for the requested sub-mesh.

Definition 7: The Right Border Plane (RBP) of a sub-mesh),,,,,(222111 zyxzyxS

with respect to a job)(γβα ××J is defined as the collection of nodes with address

),,1(2 zyx ′′+ where 21)0,1max(yyy ≤′≤+− β and 21)0,1max(zzz ≤′≤+− γ . A

RBP of sub-mesh S is a plane located just off the right boundary of S .

end

base

Z

X

Fig. 1. A sub-mesh inside the 3D mesh.

Y

3 Processors Allocation Strategies

Contiguous allocation has been investigated for 2D and 3D mesh-connected
multicomputers [1, 4, 5, 6, 7, 11, 12, 28, 29]. The main shortcoming of the very few
existing contiguous allocation strategies for the 3D mesh is that they achieve
complete sub-mesh recognition capability with high allocation overhead. Below we
describe some of the strategies that have been proposed for the 3D mesh.

First Fit (FF) and Best Fit (BF): In these two strategies [7], the free sub-meshes
are scanned and FF allocates the first sub-mesh that is large enough to hold the job,
whereas BF allocates the smallest suitable sub-mesh. Simulation results have shown
that these two strategies have comparable performance in terms of average turnaround
time and mean scheduling effectiveness; the performance of FF is close to that of BF,
therefore we only consider the FF strategy for comparison in this paper. The strategies
FF and BF are not recognition-complete. An allocation request is allocatable only if
there is a large enough sub-mesh with the same orientation as the allocation request.
Bit arrays are used for the scanning of available processors.

Turning First Fit (TFF) and Turning Best Fit (TBF): The problem of missing an
existing possible allocation explained above is solved using TFF and TBF allocation
strategies [7]. In these two strategies, turning the allocation request is used to improve
the performance of contiguous FF and BF allocation in 3D mesh. The TFF and TBF
allocation algorithms support the rotation of the job request. Let),,(cba be the width,

depth and height of a sub-mesh allocation request. The six permutations),,(cba ,

),,(bca ,),,(cab ,),,(acb ,),,(bac and),,(abc are, in turn, considered for

allocation using the allocation strategy. If allocation succeeds for any of these
permutations the process stops. For example, assume a free mesh (3, 3, 2) and the job
requests (2, 3, 2) and (3, 2, 1) arrive in this order. The second job request cannot be
allocated until it is rotated to (1, 3, 2). Simulation results have shown that the TFF
strategy can greatly improve performance in terms of average turnaround time and
mean scheduling effectiveness. Changing the orientation of allocation requests can
alleviate external fragmentation. Moreover, the performance of TFF is almost
identical to that of TBF; therefore the TFF strategy is considered for comparison in
this paper. In [7], different scheduling strategies, such as First-Come-First-Served
(FCFS) and Out-of-Order (OO) have been studied to avoid potential performance loss
due to blocking.

The allocation and deallocation times of the algorithms proposed in [7] depend on
the number of processors in the mesh system, n . The time complexity of the

allocation algorithm is in)(2nO , and the deallocation algorithm has time complexity

in)(nO .

Busy List (BL) and Turning Busy List (TBL): In these strategies [20, 23], allocation
is based on maintaining a busy list of allocated sub-meshes. The list is scanned to
determine all prohibited regions. The prohibited region of job)(γβα ××J with

respect to an allocated sub-mesh),,,,,(222111 zyxzyxS is defined as the sub-mesh

represented by the address (x
�
, y

�
, z

�
, x2, y2, z2), where x

�
 = max(x1-

� +1, 0), y
�
 = max

(y1-
�

 +1, 0) and z
�
 = max (z1-

�+1, 0). The sub-meshes (W-�+1, 0, 0, W-1, D-1, H-1),

(0, D-
�

+1, 0, W-1, D-1, H-1), and (0, 0, H-�+1, W-1, D-1, H-1) are automatically not
available for accommodating the base node of a free γβα ×× sub-mesh

for)(γβα ××J , whether the nodes in these sub-meshes are free or not; otherwise, the

sub-mesh would grow out of the corresponding mesh boundary plane (rightmost,
deepest and highest planes) of),,(HDWM . These three sub-meshes are called

automatic prohibited regions of)(γβα ××J and must always be excluded during the

sub-mesh allocation process. A job)(γβα ××J is allocatable if there exists at least

one node that does not belong to any of the prohibited regions and the three automatic
prohibited regions of)(γβα ××J .

All prohibited regions that result from the allocated sub-meshes are subtracted
from each RBP of the allocated sub-meshes to determine the nodes that can be used as
base nodes for the required sub-mesh size. Simulation results have shown that the
performance of the allocation strategy in [20, 23] is at least as good as that of the
existing allocation strategies. Moreover, the mean measured allocation time of these
strategies is much lower than that of the existing strategies. The results have also
revealed that the rotation of the job request improves the performance of the
contiguous allocation strategies.

The allocation and deallocation times of the algorithms proposed in [20, 23]
depend on the number of elements in the busy list, m . The time complexity of the

allocation algorithms is in)(2mO , and the deallocation algorithm has time

complexity in)(mO . These allocation strategies maintain a busy list of m allocated

sub-meshes. Thus, the space complexity of the allocation algorithms is in)(mO . This

space requirement is small compared to the improvement in performance in terms of
allocation overhead, as we will see in the simulation results. Also, this space
requirement is small compared to the space requirement of FF, BF, TFF and TBF,
which is in)(nO . An array is used for storing the allocation states of processors.

The time and space complexities of the allocation and deallocation algorithms
considered in this paper are summarized in Table 1. Notice that the strategies that
depend on a list of allocated sub-meshes for both allocation and de-allocation can
entail smaller time complexity because mdoes not always depend on the size of the
mesh for both allocation and deallocation. For job size distributions typically assumed
in simulation studies (e.g., the uniform distribution used in [18]), the number of
allocated sub-meshes remains small as the size of the mesh increases.

Table 1. Time and Space Complexity for Allocation and Deallocation Algorithms

Algorithm
Allocation
Complexity

Deallocation
Complexity

Space
Complexity

TBL/BL)(2mO)(mO)(mO

TFF/FF)(2nO)(nO)(nO

m : Number of allocated sub-meshes in the busy list.
n : Total number of processors in the mesh.

4 Job Scheduling Strategies

The order in which jobs are scheduled first can have a considerable effect on the
performance. In FCFS scheduling strategy, the allocation request that arrived first is
considered for allocation first. Allocation attempts stop when they fail for the current
FIFO queue head, while in SSD scheduling strategy, the job with the shortest service
demand is scheduled first [10, 21, 22]. Any of them can start execution if its
allocation request can be satisfied. Job scheduling has substantial effect on the
performance of the allocation strategies. In [21, 22], the authors showed that the effect
of the SSD scheduling strategy on the performance of the allocation strategies is
substantially better than that of the FCFS scheduling strategy.

The performance of contiguous allocation strategies compared can be significantly
affected by both a distribution adopted for job execution times and the scheduling
strategy. To illustrate this, the performance of allocation strategies in this paper is
evaluated in the context of heavy-tailed job execution time under both FCFS and SSD
scheduling strategies. SSD scheduling strategy should be adopted to deal with heavy-
tailed job execution times and to avoid potential performance loss due to blocking.

5 Simulation Results

Extensive simulation experiments have been carried out to compare the performance
of the allocation strategies considered in this paper, with and without change of
request orientation. Switching request orientation has been used in [5, 7, 20, 23, 28].

We have implemented the allocation and deallocation algorithms, including the
busy list routines, in the C language, and integrated the software into the ProcSimity
simulation tool for processor allocation in highly parallel systems [10, 18].

The target mesh is cube with width W , depth D and height H . Jobs are assumed
to have exponential inter-arrival times. They are scheduled using First-Come-First-
Served (FCFS) and Shortest-Service-Demand (SSD) scheduling strategies. The FCFS
scheduling strategy is chosen because it is fair and it is widely used in other similar
studies [6, 11, 12, 20, 21, 22, 23, 24], while the SSD scheduling strategy is used to
avoid potential performance loss due to blocking [21, 22]. The execution times are
modeled by a Bounded Pareto [13] (exhibiting a heavy-tailed property) as follows:

)(
)/(1

)(1 qxkx
qk

k
xf ≤≤

−
= −−α

α

αα

where k and q are the lower and upper limit of job execution time, and α is a

parameter that reflects the variability of job execution time. In the experiments, these
parameters are set to: 0.15=k , 0.4241=q , and 0.1=α as suggested in [13].

Uniform distribution is used to generate the width, depth and height of job
requests. The uniform distribution is used over the range from 1 to the mesh side
length, where the width, depth and height of the job requests are generated

independently. This distribution has often been used in the literature [1, 4, 6, 7, 11,
12, 20, 21, 22, 23, 24, 28, 29]. Each simulation run consists of one thousand
completed jobs. Simulation results are averaged over enough independent runs so that
the confidence level is 95% that relative errors are below 5% of the means. The main
performance parameters observed are the average turnaround time of jobs, mean
system utilization and average allocation overhead. The turnaround time is the time
that a parallel job spends in the mesh from arrival to departure. The utilization is the
percentage of processors that are utilized over time. The allocation overhead is the
time that the allocation algorithm takes for allocation and deallocation operations per
job. The independent variable in the simulation is the system load. The system load is
defined as the inverse of the mean inter-arrival time of jobs.

The notation <allocation strategy>(<scheduling strategy>) is used to represent the
strategies in the performance figures. For example, TBL(SSD) refers to the Turning
Busy List allocation strategy under the scheduling strategy Shortest-Service-Demand.

Figure 2 depicts the average turnaround time of the allocation strategies (TBL,
TFF, BL, and FF) for the heavy-tailed and exponential job execution times under
FCFS scheduling strategy. The simulation results in this figure are presented for a
heavy system load. It can be seen in this figure that the performance of the allocation
strategies degrades when the distribution of job execution times is heavy-tailed. For
example, the average turnaround time of TBL(FCFS) under exponential job execution
time is 49% of the average turnaround time of TBL(FCFS) under heavy-tailed job
execution time, therefore, the SSD strategy should be adopted to deal with heavy-
tailed job execution times as it avoids performance loss due FCFS blocking.

T
B

L(F
C

F
S

)

T
B

L(F
C

F
S

)

T
F

F
(F

C
F

S
)

T
F

F
(F

C
F

S
)

B
L(F

C
F

S
)

B
L(F

C
F

S
)

F
F

(F
C

F
S

)

F
F

(F
C

F
S

)

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

Exponential Heavy Tailed

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e

TBL(FCFS)

TFF(FCFS)

BL(FCFS)

FF(FCFS)

Fig. 2. Average turnaround time in BL, FF, TBL, and TFF under the exponential and
heavy-tailed job execution times with FCFS scheduling strategy in an 8 × 8 × 8 mesh.

In Figure 3, the average turnaround time of jobs is plotted against the system load

for both scheduling strategies considered in this paper. It can be seen in the figure that
the strategies with rotation under SSD strategy (TBL(SSD) and TFF(SSD)) have
almost identical performance, and that they are superior to all other strategies. They
are followed, in order, by the strategies BL(SSD), FF(SSD), TBL(FCFS),
TFF(FCFS), BL(FCFS), and FF(FCFS). When compared to TBL(SSD) and
TFF(SSD), BL(SSD) increases the average turnaround times by about 31% and 57%
for the loads 0.025 and 0.105 jobs/time unit, respectively. It can also be seen in the
figure that the average turnaround times of the strategies that depend on the busy list
is very close to that of the strategies that depend on the number of processors in the
mesh system. For example, the average turnaround time of TBL(SSD) is very close to

that of TFF(SSD). However, the time complexity of the strategies that depend on the

busy list (TBL and BL) is in)(2mO [20, 23], whereas it is in)(2nO for the other

strategies (TFF and FF) [7]. The time complexity of TBL and BL does not grow with
the size of the mesh as in TFF and FF. It can also be seen in the figure that the
average turnaround time of the strategies with rotation is substantially superior to the
strategies without rotation because it is highly likely that a suitable contiguous sub-
mesh is available for allocation to a job when request rotation is allowed. It can also
be noticed in the figure that the SSD strategy is much better than the FCFS strategy.
This finding demonstrates that the scheduling and allocation strategies both have
substantial effect on the performance of allocation strategies in the 3D mesh.

In Figure 4, the mean system utilization of the allocation strategies is plotted
against the system loads for the two scheduling strategies considered in this paper. In
this figure, TBL(SSD) and TFF(SSD) again have almost identical performance, and
they are slightly superior to the other strategies. Also, these results show that
switching request orientation improves performance substantially. This is indicated by
the largely superior mean system utilization of the strategies that can switch the
orientation of allocation requests (TBL(SSD), TBL(FCFS), TFF(SSD), and
TFF(FCFS)) when they are compared to the strategies without rotation (BL(SSD),
BL(FCFS), FF(SSD), FF(FCFS)). Moreover, the contiguous allocation strategies with
rotation under SSD scheduling strategy achieve system utilization of 52%, but the
contiguous allocation strategies without rotation can not exceed 42%. Also, higher
system utilization is achievable under heavy loads because the waiting queue is filled
very early, allowing each allocation strategy to reach its upper limits of utilization.

0

4000

8000

12000

16000

20000

24000

0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105

A
ve

ra
ge

 T
u

rn
a

ro
u

n
d

T

im
e

Load

TBL(FCFS)

TFF(FCFS)

TBL(SSD)

TFF(SSD)

BL(FCFS)

FF(FCFS)

BL(SSD)

Fig. 3. Average turnaround time vs. system load in BL, FF, TBL, and TFF under the
FCFS and SSD scheduling strategies in an 8 × 8 × 8 mesh.

0.05

0.15

0.25

0.35

0.45

0.55

0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105

U
til

iz
a

tio
n

Load

TBL(FCFS)

TFF(FCFS)

TBL(SSD)

TFF(SSD)

BL(FCFS)

FF(FCFS)

BL(SSD)

Fig. 4. Mean System utilization in BL, FF, TBL, and TFF under the FCFS and SSD
scheduling strategies in an 8 × 8 × 8 mesh.

In Figure 5, the average number of allocated sub-meshes (m) in TBL is plotted
against the system load for different mesh sizes under both FCFS and SSD scheduling
strategies. It can be seen in the figure that the average number of allocated sub-
meshes (m) is much lower than the number of processors in the mesh system (n). It
can also be seen in the figure that for larger mesh sizes, the results show that m does
not grow with n . It can also be noticed in the figure that the average number of
allocated sub-meshes under SSD is higher than that under FCFS. In SSD, the job with
the shortest service demand is scheduled first, meaning that allocation and
deallocation operations are more numerous resulting in more allocated sub-meshes in
the busy list.

1

1.5

2

2.5

3

3.5

0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105

A
ve

ra
ge

 N
u

m
b

er
 o

f
A

llo
ca

te
d

 S
u

b
-m

es
h

es

Load

TBL(FCFS)8x8x8

TBL(FCFS)10x10x10

TBL(FCFS)12x12x12

TBL(SSD)8x8x8

TBL(SSD)10x10x10

TBL(SSD)12x12x12

Fig. 5. Average number of allocated sub-meshes (m) in TBL under the FCFS and SSD
scheduling strategies in 8 × 8 × 8 mesh, 10 × 10 × 10, and 12 × 12 × 12 mesh.

Figures 6 and 7 show the average allocation and deallocation time (allocation

overhead) for the allocation strategies against the job arrival rate in an 8 × 8 × 8 mesh
under the two scheduling strategies FCFS and SSD. We observe that the strategies
that depend on the busy list (TBL, BL) take much smaller allocation overhead than
the strategies that depend on the number of processors in the mesh system (TFF, FF)
under both FCFS and SSD scheduling strategies. In Figure 6, for example, the time
needed to carry out the allocation and deallocation operations of TBL(FCFS) strategy
is 9% of the time taken by these operations in TFF(FCFS) strategy under the arrival
rate 0.075 jobs/time unit. It can also be seen in the figures that the time needed for
both allocation and deallocation for the strategies with rotation is higher than that of
the strategies without rotation because in the worst case, the allocation process for the
strategies with rotation, is repeated for all possible permutations (six permutations) of
the job request while this process is repeated only one time for the other strategies.
Moreover, it can be seen in the figures that the difference in allocation time gets much
more significant as the system load increases. Thus, the strategies which depend on
the busy list for both allocation and deallocation can be said to be more effective than
the strategies that depend on the number of processors in the mesh system.

6 Conclusion and Future Directions

We have compared the performance of contiguous processor allocation strategies
proposed for 3D mesh connected multicomputer for a wide range of system load and

system sizes when the distribution of job execution times is heavy-tailed (e.g.
Bounded Pareto distribution). These allocation strategies cover a wide range of
choices, including traditional First Fit (FF), Turning First Fit (TFF), Busy List (BL)
approach that maintains a list of allocated sub-meshes to determine the regions
consisting of nodes that cannot be used as base nodes for the requested sub-meshes,
and Turning Bust List strategy (TBL), that attempts to maintain a good performance
in terms of utilization, turnaround time, and allocation overhead.

In this study, the allocation overhead (i.e., allocation and deallocation time) is
taken into account. A new scheduling strategies (SSD) has been used to deal with
heavy-tailed job execution times to avoid performance loss due to blocking that
results from largest jobs.

Simulation results have shown that the TBL(SSD) strategy is superior overall to all
other strategies. It is as effective as the best competitor TFF(SSD) strategy, yet it is
substantially more efficient. Moreover, the results have shown that the performance of
the allocation strategies that depend on the number of allocated sub-meshes in the
busy list (TBL and BL) is at least as good as that of the allocation strategies that
depend on the number of processors in the mesh system in terms of average
turnaround time and mean system utilization. The results have also shown that, the
average allocation and deallocation time of the strategies that depend on the bust list
(TBL and BL) is much lower than that of the other strategies that depend on, for both
allocation and deallocation, the number of processors in the mesh system (TFF and
FF). The results have also revealed that the rotation of the job request can greatly
improve the performance of the contiguous allocation strategies. Moreover, the
simulation results have shown that the effects of the SSD scheduling strategy on the
performance of the allocation strategies is substantially better than that of the FCFS
scheduling strategy in terms of performance parameters used in this study.

The busy list strategies (TBL and BL) can be efficient because it is implemented
using a busy list approach. This approach can be expected to be efficient in practice
because job sizes typically grow with the size of the mesh. The length of the busy list
can be expected to be small, even when the size of the mesh scales up.

As a continuation of this research in the future, it would be interesting to
implement the allocation strategies based on real workload traces from different
parallel machines and compare it with our results obtained by means of simulations.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105

A
ve

ra
ge

 A
llo

ca
tio

n
 a

n
d

D
e

a
llo

ca
tio

n
T

im
e

Load

TBL(FCFS)

TFF(FCFS)

TBL(SSD)

TFF(SSD)

Fig. 6. Average allocation and deallocation times in TBL and TFF under the FCFS and
SSD scheduling strategies in an 8 × 8 × 8 mesh.

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105

A
ve

ra
ge

 A
llo

ca
tio

n

a
n

d
 D

e
a

llo
ca

tio
n

 T
im

e

Load

BL(FCFS)

FF(FCFS)

BL(SSD)

FF(SSD)

Fig. 7. Average allocation and deallocation times in BL and FF under the FCFS and SSD
scheduling strategies in an 8 × 8 × 8 mesh.

References

[1] B.-S.Yoo, C.-R. Das, A Fast and Efficient Processor Allocation Scheme for Mesh-
Connected Multicomputers, IEEE Transactions on Parallel & Distributed Systems,
51(1) (2002) 46-60.

[2] C. Peterson, J. Sutton, P. Wiley, iWARP: a 100-MPOS, LIW microprocessor for
multicomputers, IEEE Micro, 11(3) (1991) 26-29, 81-87.

[3] Cray, Cray XT3 Datasheet (2004).
[4] G.-M. Chiu, S.-K. Chen, An efficient submesh allocation scheme for two-dimensional

meshes with little overhead, IEEE Transactions on Parallel & Distributed Systems,
10(5) (1999) 471-486.

[5] H.Choo, S.Yoo, H.-Y. Youn, Processor scheduling and allocation for 3D torus
multicomputer systems, IEEE Transactions on Parallel & Distributed Systems, 11(5)
(2000) 475-484.

[6] I. Ababneh, An Efficient Free-list Submesh Allocation Scheme for two-dimensional
mesh-connected multicomputers, Journal of Systems and Software, 79(8) (2006)
1168-1179.

[7] I. Ababneh, Job scheduling and contiguous processor allocation for three-dimensional
mesh multicomputers, AMSE Advances in Modelling & Analysis, 6(4) (2001) 43-58.

[8] Intel Corporation, A Touchstone DELTA system description, (1991).
[9] J. Wei, X. Zhou, C-Z. Xu, Robust Processing Rate Allocation for Proportional

Slowdown Differentiation on Internet Servers, IEEE Transactions on Computers,
54(8) (2005) 964-977.

[10] K. Windisch, J. V. Miller, and V. Lo, ProcSimity: an experimental tool for processor
allocation and scheduling in highly parallel systems, Proceedings of the Fifth
Symposium on the Frontiers of Massively Parallel Computation (Frontiers'95),
Washington, DC, USA, IEEE Computer Society Press, (1995) 414-421.

[11] K.-H. Seo, Fragmentation-Efficient Node Allocation Algorithm in 2D Mesh-
Connected Systems, Proceedings of the 8th International Symposium on Parallel
Architecture, Algorithms and Networks (ISPAN’05), IEEE Computer Society Press,
(2005) 318-323.

[12] K.-H. Seo, S.-C. Kim, Improving system performance in contiguous processor
allocation for mesh-connected parallel systems, The Journal of Systems and Software,
67(1) (2003) 45-54.

[13] L. He, S. Jarvis, D. Spooner, H. Jiang, D. Dillenberger, and G. Nudd, Allocating Non-
Real-Time and Soft Real-Time Jobs in Multiclusters, IEEE Transactions on Parallel
and Distributed Systems, 17(2) (2006) 99-112.

[14] M. Blumrich, D. Chen, P. Coteus, A. Gara, M. Giampapa, P. Heidelberger, S. Singh,
B. Steinmacher-Burow, T. Takken and P. Vranas, Design and Analysis of the
BlueGene/L Torus Interconnection Network, IBM Research Report RC23025, IBM
Research Division, Thomas J. Watson Research Center, Dec. 3, (2003).

[15] M. Harchol-Balter, The Effect of Heavy-Tailed Job Size. Distributions on Computer
System Design, Proceedings of ASA-IMS Conference on Applications of Heavy Tailed
Distributions in Economics, Engineering and Statistics, Washington, DC, June (1999).

[16] Mark E. Crovella, Lester Lipsky, Long-Lasting Transient Conditions in Simulations
with Heavy-Tailed Workloads, Proceedings of the 1997 Winter Simulation
Conference, 7-10 Dec (1997) 1005-1012.

[17] Mor Harchol-Balter, Mark E. Crovella, Cristina D. Murta, On Choosing a Task
Assignment Policy for a Distributed Server System, Journal of Parallel and
Distributed Computing, 59(2) (1999) 204-228.

[18] ProcSimity V4.3 User’s Manual, University of Oregon, (1997).
[19] R.E. Kessler, J.L Swarszmeier, Cray T3D: a new dimension for Cray research, Proc.

CompCon, (1993) 176-182.
[20] S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh and Lewis M. Mackhenzie, An

Efficient Turning Busy List Sub-mesh Allocation Strategy for 3D Mesh Connected
Multicomputers, Proceedings of the 7th Annual PostGraduate Symposium on the
Convergence of Telecommunications, Networking & Broadcasting, (PGNET 2006),
Liverpool John Moores University, UK, 26-27 June (2006) 37-43.

[21] S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh and Lewis M. Mackhenzie, An
Efficient Processor Allocation Strategy that Maintains a High Degree of Contiguity
among Processors in 2D Mesh Connected Multicomputers, 2007 ACS/IEEE
International Conference on Computer Systems and Applications (AICCSA 2007),
IEEE Computer Society Press, Amman, Jordan, 13-16 May (2007).

[22] S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh, and L. Machenzie, “A Fast and
Efficient Processor Allocation Strategy which Combines a Contiguous and Non-
contiguous Processor Allocation Algorithms”, Technical Report; TR-2007-229, DCS
Technical Report Series, University of Glasgow, January (2007).

[23] S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh, and L. Machenzie, A Fast and
Efficient Strategy for Sub-mesh Allocation with Minimal Allocation Overhead in 3D
Mesh Connected Multicomputers, Ubiquitous Computing and Communication
Journal, ISSN 1992-8424, 1 (2006).

[24] S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh, and L. Machenzie, Non-
contiguous Processor Allocation Strategy for 2D Mesh Connected Multicomputers
Based on Sub-meshes Available for Allocation, Proceedings of the 12th International
Conference on Parallel and Distributed Systems (ICPADS’06), Minneapolis,
Minnesota, USA, IEEE Computer Society Press, 2 (2006) 41-48.

[25] V. Varavithya, Multicasting in wormhole routed multicomputers, Ph.D. Thesis,
Department of Electrical and Computer Engineering, Iowa State University, (1998).

[26] Vahid Tabatabaee, Ananta Tiwari, Jeffrey K. Hollingsworth, Parallel Parameter
Tuning for Applications with Performance Variability, SC'05, Seattle WA, (2005).

[27] W. Athas, C. Seitz, Multicomputers: message-passing concurrent computers, IEEE
Computer, 21(8) (1988) 9-24.

[28] W. Qiao, L. Ni, Efficient processor allocation for 3D tori, Technical Report, Michigan
State University, East Lansing, MI, 48824-1027, (1994).

[29] Y. Zhu, Efficient processor allocation strategies for mesh-connected parallel
computers, Journal of Parallel and Distributed Computing, 16(4) (1992) 328-337.

	citation_temp.pdf
	http://eprints.gla.ac.uk/3736/

	citation_temp.pdf
	http://eprints.gla.ac.uk/3736/

