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Abstract. The performance of contiguous allocation strategies can be 
significantly affected by the distribution of job execution times. In this paper, 
the performance of the existing contiguous allocation strategies for 3D mesh 
multicomputers is re-visited in the context of heavy-tailed distributions (e.g., a 
Bounded Pareto distribution). The strategies are evaluated and compared using 
simulation experiments for both First-Come-First-Served (FCFS) and Shortest-
Service-Demand (SSD) scheduling strategies under a variety of system loads 
and system sizes. The results show that the performance of the allocation 
strategies degrades considerably when job execution times follow a heavy-
tailed distribution. Moreover, SSD copes much better than FCFS scheduling 
strategy in the presence of heavy-tailed job execution times. The results also 
show that the strategies that depend on a list of allocated sub-meshes for both 
allocation and deallocation have lower allocation overhead and deliver good 
system performance in terms of average turnaround time and mean system 
utilization. 

1   Introduction 

The mesh has been one of the most common networks for recent multicomputers due 
to its simplicity, scalability, structural regularity, and ease of implementation [1, 6, 
12]. Meshes are suited to a variety of applications including matrix computation, 
image processing and problems whose task graphs can be embedded naturally into the 
topology [25].  

Efficient processor allocation and job scheduling are critical to harnessing the full 
computing power of a multicomputer [1, 4, 5, 28]. The goal of job scheduling is to 
select the next job to be executed while the goal of processor allocation is to select the 
set of processors on which parallel jobs are executed [1].  

In distributed memory multicomputers, jobs are allocated distinct contiguous 
processor sub-meshes for the duration of their execution [1, 4, 5, 6, 7, 12, 28, 29]. 



     

Most existing research studies [1, 4, 6, 11, 12, 29] on contiguous allocation have been 
carried out mostly in the context of the 2D mesh network. There has been relatively 
very little work on the 3D version of the mesh. Although the 2D mesh has been used 
in a number of parallel machines, such as iWARP [2] and Delta Touchstone [8], most 
practical multicomputers, like the Cray XT3 [3], Cray T3D [19], and the IBM 
BlueGene/L [14], have used the 3D mesh and torus as the underlying network 
topology due to its lower diameter and average communication distance [27]. 

Most existing contiguous allocation strategies for the 3D mesh, mainly the early 
ones, have time complexities that grow linearly with the size of the mesh [5, 7, 28]. 
The recent contiguous allocation strategies have time complexities that can be less 
sensitive to the size of the mesh [20, 23]. They build lists of the busy sub-meshes with 
the goal of achieving time complexities that depend on the number of allocated sub-

meshes instead of the mesh size [20, 23]. Time complexities in )( 2mO , where m  is 

the number of allocated sub-meshes in the busy list, were achieved [20, 23]. An 
advantage of the busy-list approach is that the list of busy sub-meshes is often small 
even when the mesh size becomes large, which decreases the allocation overhead. 

The efficacy of most contiguous allocation strategies has been assessed under the 
assumption of exponentially distributed execution times [4, 5, 6, 7, 11, 12, 20, 23, 28, 
29], which may not reflect all possible practical scenarios. For instance, a number of 
measurement studies [9, 15, 16, 17, 26] have convincingly shown that the execution 
times of many computational jobs are characterised by heavy-tailed execution times; 
that is, there are typically many short jobs, and fewer long jobs. Heavy-tailed 
distributions capture this variability and behave quite differently from the 
distributions more commonly used to evaluate the performance of allocation 
strategies (e.g., the exponential distribution). In particular, when sampling random 
variables that follow heavy-tailed distributions, the probability of large observations 
occurring is non-negligible.  

In this paper, the performance of the existing contiguous allocation strategies for 
3D mesh-connected multicomputers is revisited in the context of heavy-tailed job 
execution times. Existing strategies were typically evaluated with the assumption of 
First-Come-First-Served (FCFS) job scheduling. In this paper, a Shortest-Service-
Demand (SSD) scheduling strategy is also used because it is expected to reduce 
performance loss due to blocking. This strategy was found to improve performance 
significantly [10, 21, 22]. Also in this paper, the performance of allocation strategies 
is measured in terms of usual performance parameters [4, 5, 6, 7, 20, 21, 22, 23, 24, 
28, 29] such as the average turnaround time and mean system utilization. Algorithmic 
efficiency is measured in terms of the mean measured allocation overhead that 
allocation and deallocation operations take per job. The results show that the 
performance of the allocation strategies degrades when the distribution of job 
execution times is heavy-tailed. As a consequence, an appropriate scheduling strategy 
should be adopted to deal with heavy-tailed execution times. Our analysis reveals that 
the SSD scheduling strategy exhibits superior performance than the FCFS scheduling 
strategy in terms of average turnaround time and mean system utilization.   

The rest of the paper is organised as follows. The following section contains 
relevant preliminaries. Section 3 contains a brief overview of the allocation strategies 
compared in this study. Section 4 contains a brief overview of the scheduling 



strategies considered. Simulation results are presented in Section 5, and Section 6 
concludes this paper. 

2   Preliminaries 

The target system is a HDW ×× 3D mesh, where W is the width of the cubic mesh, 
D  its depth and H  its height. Each processor is denoted by a coordinate 
triple ),,( zyx , where Wx <≤0 , Dy <≤0  and Hz <≤0  [24]. A processor is 

connected by bidirectional communication links to its neighbour processors. The 
following definitions have been adopted from [4, 24]. 
 
Definition 1: A sub-mesh ),,( hdwS  of width w , depth d , and height h , where 

Ww ≤<0 , Dd ≤<0  and Hh ≤<0  is specified by the coordinates ),,( zyx  and 

),,( zyx ′′′ , where ),,( zyx  are the coordinates of the base of the sub-mesh and 

),,( zyx ′′′  are the coordinates of its end, as shown in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Definition 2: The size of ),,( hdwS  is hdw ×× . 

Definition 3: An allocated sub-mesh is one whose processors are all allocated to a 
parallel job. 

Definition 4: A free sub-mesh is one whose processors are all unallocated. 

Definition 5: The list of all sub-meshes that are currently allocated to jobs and are 
not available for allocation to other jobs is called the busy list. 

Definition 6: A prohibited region is a region consisting of nodes that can not be used 
as base nodes for the requested sub-mesh. 

Definition 7: The Right Border Plane (RBP) of a sub-mesh ),,,,,( 222111 zyxzyxS  

with respect to a job )( γβα ××J  is defined as the collection of nodes with address 

),,1( 2 zyx ′′+  where 21 )0,1max( yyy ≤′≤+− β  and 21 )0,1max( zzz ≤′≤+− γ . A 

RBP of sub-mesh S  is a plane located just off the right boundary of S . 

end 

base 

Z 

X 

Fig. 1. A sub-mesh inside the 3D mesh. 
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3   Processors Allocation Strategies 

Contiguous allocation has been investigated for 2D and 3D mesh-connected 
multicomputers [1, 4, 5, 6, 7, 11, 12, 28, 29]. The main shortcoming of the very few 
existing contiguous allocation strategies for the 3D mesh is that they achieve 
complete sub-mesh recognition capability with high allocation overhead. Below we 
describe some of the strategies that have been proposed for the 3D mesh. 

First Fit (FF) and Best Fit (BF): In these two strategies [7], the free sub-meshes 
are scanned and FF allocates the first sub-mesh that is large enough to hold the job, 
whereas BF allocates the smallest suitable sub-mesh. Simulation results have shown 
that these two strategies have comparable performance in terms of average turnaround 
time and mean scheduling effectiveness; the performance of FF is close to that of BF, 
therefore we only consider the FF strategy for comparison in this paper. The strategies 
FF and BF are not recognition-complete. An allocation request is allocatable only if 
there is a large enough sub-mesh with the same orientation as the allocation request. 
Bit arrays are used for the scanning of available processors.  

Turning First Fit (TFF) and Turning Best Fit (TBF): The problem of missing an 
existing possible allocation explained above is solved using TFF and TBF allocation 
strategies [7]. In these two strategies, turning the allocation request is used to improve 
the performance of contiguous FF and BF allocation in 3D mesh. The TFF and TBF 
allocation algorithms support the rotation of the job request. Let ),,( cba  be the width, 

depth and height of a sub-mesh allocation request. The six permutations ),,( cba , 

),,( bca , ),,( cab , ),,( acb , ),,( bac  and ),,( abc  are, in  turn, considered for 

allocation using the allocation strategy. If allocation succeeds for any of these 
permutations the process stops. For example, assume a free mesh (3, 3, 2) and the job 
requests (2, 3, 2) and (3, 2, 1) arrive in this order. The second job request cannot be 
allocated until it is rotated to (1, 3, 2). Simulation results have shown that the TFF 
strategy can greatly improve performance in terms of average turnaround time and 
mean scheduling effectiveness. Changing the orientation of allocation requests can 
alleviate external fragmentation. Moreover, the performance of TFF is almost 
identical to that of TBF; therefore the TFF strategy is considered for comparison in 
this paper. In [7], different scheduling strategies, such as First-Come-First-Served 
(FCFS) and Out-of-Order (OO) have been studied to avoid potential performance loss 
due to blocking. 

The allocation and deallocation times of the algorithms proposed in [7] depend on 
the number of processors in the mesh system, n . The time complexity of the 

allocation algorithm is in )( 2nO , and the deallocation algorithm has time complexity 

in )(nO . 

Busy List (BL) and Turning Busy List (TBL): In these strategies [20, 23], allocation 
is based on maintaining a busy list of allocated sub-meshes. The list is scanned to 
determine all prohibited regions. The prohibited region of job )( γβα ××J  with 

respect to an allocated sub-mesh ),,,,,( 222111 zyxzyxS  is defined as the sub-mesh 

represented by the address (x
�
, y

�
, z

�
, x2, y2, z2), where x

�
 = max(x1-

� +1, 0), y
�
 = max 

(y1-
�

 +1, 0) and z
�
 = max (z1-

�+1, 0). The sub-meshes (W-�+1, 0, 0, W-1, D-1, H-1), 



(0, D-
�

+1, 0, W-1, D-1, H-1), and (0, 0, H-�+1, W-1, D-1, H-1) are automatically not 
available for accommodating the base node of a free γβα ××  sub-mesh 

for )( γβα ××J , whether the nodes in these sub-meshes are free or not; otherwise, the 

sub-mesh would grow out of the corresponding mesh boundary plane (rightmost, 
deepest and highest planes) of ),,( HDWM . These three sub-meshes are called 

automatic prohibited regions of )( γβα ××J  and must always be excluded during the 

sub-mesh allocation process. A job )( γβα ××J  is allocatable if there exists at least 

one node that does not belong to any of the prohibited regions and the three automatic 
prohibited regions of )( γβα ××J . 

All prohibited regions that result from the allocated sub-meshes are subtracted 
from each RBP of the allocated sub-meshes to determine the nodes that can be used as 
base nodes for the required sub-mesh size. Simulation results have shown that the 
performance of the allocation strategy in [20, 23] is at least as good as that of the 
existing allocation strategies. Moreover, the mean measured allocation time of these 
strategies is much lower than that of the existing strategies. The results have also 
revealed that the rotation of the job request improves the performance of the 
contiguous allocation strategies. 

The allocation and deallocation times of the algorithms proposed in [20, 23] 
depend on the number of elements in the busy list, m . The time complexity of the 

allocation algorithms is in )( 2mO , and the deallocation algorithm has time 

complexity in )(mO . These allocation strategies maintain a busy list of m  allocated 

sub-meshes. Thus, the space complexity of the allocation algorithms is in )(mO . This 

space requirement is small compared to the improvement in performance in terms of 
allocation overhead, as we will see in the simulation results. Also, this space 
requirement is small compared to the space requirement of FF, BF, TFF and TBF, 
which is in )(nO . An array is used for storing the allocation states of processors. 

The time and space complexities of the allocation and deallocation algorithms 
considered in this paper are summarized in Table 1. Notice that the strategies that 
depend on a list of allocated sub-meshes for both allocation and de-allocation can 
entail smaller time complexity because mdoes not always depend on the size of the 
mesh for both allocation and deallocation. For job size distributions typically assumed 
in simulation studies (e.g., the uniform distribution used in [18]), the number of 
allocated sub-meshes remains small as the size of the mesh increases. 

  
Table 1. Time and Space Complexity for Allocation and Deallocation Algorithms 

Algorithm 
Allocation 
Complexity 

  

Deallocation 
Complexity 

Space 
Complexity 

 
TBL/BL )( 2mO  )(mO  )(mO  

TFF/FF )( 2nO  )(nO  )(nO  

m : Number of allocated sub-meshes in the busy list. 
n : Total number of processors in the mesh.  



     

4   Job Scheduling Strategies 

The order in which jobs are scheduled first can have a considerable effect on the 
performance. In FCFS scheduling strategy, the allocation request that arrived first is 
considered for allocation first. Allocation attempts stop when they fail for the current 
FIFO queue head, while in SSD scheduling strategy, the job with the shortest service 
demand is scheduled first [10, 21, 22]. Any of them can start execution if its 
allocation request can be satisfied. Job scheduling has substantial effect on the 
performance of the allocation strategies. In [21, 22], the authors showed that the effect 
of the SSD scheduling strategy on the performance of the allocation strategies is 
substantially better than that of the FCFS scheduling strategy.  

The performance of contiguous allocation strategies compared can be significantly 
affected by both a distribution adopted for job execution times and the scheduling 
strategy. To illustrate this, the performance of allocation strategies in this paper is 
evaluated in the context of heavy-tailed job execution time under both FCFS and SSD 
scheduling strategies. SSD scheduling strategy should be adopted to deal with heavy-
tailed job execution times and to avoid potential performance loss due to blocking.   

5   Simulation Results 

Extensive simulation experiments have been carried out to compare the performance 
of the allocation strategies considered in this paper, with and without change of 
request orientation. Switching request orientation has been used in [5, 7, 20, 23, 28]. 

We have implemented the allocation and deallocation algorithms, including the 
busy list routines, in the C language, and integrated the software into the ProcSimity 
simulation tool for processor allocation in highly parallel systems [10, 18]. 

The target mesh is cube with width W , depth D  and height H . Jobs are assumed 
to have exponential inter-arrival times. They are scheduled using First-Come-First-
Served (FCFS) and Shortest-Service-Demand (SSD) scheduling strategies. The FCFS 
scheduling strategy is chosen because it is fair and it is widely used in other similar 
studies [6, 11, 12, 20, 21, 22, 23, 24], while the SSD scheduling strategy is used to 
avoid potential performance loss due to blocking [21, 22]. The execution times are 
modeled by a Bounded Pareto [13] (exhibiting a heavy-tailed property) as follows: 

 

)(
)/(1

)( 1 qxkx
qk

k
xf ≤≤

−
= −−α

α

αα
 

 
where k  and q  are the lower and upper limit of job execution time, and α  is a 

parameter that reflects the variability of job execution time. In the experiments, these 
parameters are set to: 0.15=k , 0.4241=q , and 0.1=α  as suggested in [13].  

Uniform distribution is used to generate the width, depth and height of job 
requests. The uniform distribution is used over the range from 1 to the mesh side 
length, where the width, depth and height of the job requests are generated 



independently. This distribution has often been used in the literature [1, 4, 6, 7, 11, 
12, 20, 21, 22, 23, 24, 28, 29]. Each simulation run consists of one thousand 
completed jobs. Simulation results are averaged over enough independent runs so that 
the confidence level is 95% that relative errors are below 5% of the means. The main 
performance parameters observed are the average turnaround time of jobs, mean 
system utilization and average allocation overhead. The turnaround time is the time 
that a parallel job spends in the mesh from arrival to departure. The utilization is the 
percentage of processors that are utilized over time. The allocation overhead is the 
time that the allocation algorithm takes for allocation and deallocation operations per 
job. The independent variable in the simulation is the system load. The system load is 
defined as the inverse of the mean inter-arrival time of jobs.  

The notation <allocation strategy>(<scheduling strategy>) is used to represent the 
strategies in the performance figures. For example, TBL(SSD) refers to the Turning 
Busy List allocation strategy under the scheduling strategy Shortest-Service-Demand. 

Figure 2 depicts the average turnaround time of the allocation strategies (TBL, 
TFF, BL, and FF) for the heavy-tailed and exponential job execution times under 
FCFS scheduling strategy. The simulation results in this figure are presented for a 
heavy system load. It can be seen in this figure that the performance of the allocation 
strategies degrades when the distribution of job execution times is heavy-tailed. For 
example, the average turnaround time of TBL(FCFS) under exponential job execution 
time is 49% of the average turnaround time of TBL(FCFS) under heavy-tailed job 
execution time, therefore, the SSD strategy should be adopted to deal with heavy-
tailed job execution times as it avoids performance loss due FCFS blocking. 
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Fig. 2. Average turnaround time in BL, FF, TBL, and TFF under the exponential and 
heavy-tailed job execution times with FCFS scheduling strategy in an 8 × 8 × 8 mesh. 

 
In Figure 3, the average turnaround time of jobs is plotted against the system load 

for both scheduling strategies considered in this paper. It can be seen in the figure that 
the strategies with rotation under SSD strategy (TBL(SSD) and TFF(SSD)) have 
almost identical performance, and that they are superior to all other strategies. They 
are followed, in order, by the strategies BL(SSD), FF(SSD), TBL(FCFS), 
TFF(FCFS), BL(FCFS), and FF(FCFS). When compared to TBL(SSD) and 
TFF(SSD), BL(SSD) increases the average turnaround times by about 31% and 57% 
for the loads 0.025 and 0.105 jobs/time unit, respectively. It can also be seen in the 
figure that the average turnaround times of the strategies that depend on the busy list 
is very close to that of the strategies that depend on the number of processors in the 
mesh system. For example, the average turnaround time of TBL(SSD) is very close to 



     

that of TFF(SSD). However, the time complexity of the strategies that depend on the 

busy list (TBL and BL) is in )( 2mO  [20, 23], whereas it is in )( 2nO  for the other 

strategies (TFF and FF) [7]. The time complexity of TBL and BL does not grow with 
the size of the mesh as in TFF and FF. It can also be seen in the figure that the 
average turnaround time of the strategies with rotation is substantially superior to the 
strategies without rotation because it is highly likely that a suitable contiguous sub-
mesh is available for allocation to a job when request rotation is allowed. It can also 
be noticed in the figure that the SSD strategy is much better than the FCFS strategy. 
This finding demonstrates that the scheduling and allocation strategies both have 
substantial effect on the performance of allocation strategies in the 3D mesh. 

In Figure 4, the mean system utilization of the allocation strategies is plotted 
against the system loads for the two scheduling strategies considered in this paper. In 
this figure, TBL(SSD) and TFF(SSD) again have almost identical performance, and 
they are slightly superior to the other strategies. Also, these results show that 
switching request orientation improves performance substantially. This is indicated by 
the largely superior mean system utilization of the strategies that can switch the 
orientation of allocation requests (TBL(SSD), TBL(FCFS), TFF(SSD), and 
TFF(FCFS)) when they are compared to the strategies without rotation (BL(SSD), 
BL(FCFS), FF(SSD), FF(FCFS)). Moreover, the contiguous allocation strategies with 
rotation under SSD scheduling strategy achieve system utilization of 52%, but the 
contiguous allocation strategies without rotation can not exceed 42%. Also, higher 
system utilization is achievable under heavy loads because the waiting queue is filled 
very early, allowing each allocation strategy to reach its upper limits of utilization. 
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Fig. 3. Average turnaround time vs. system load in BL, FF, TBL, and TFF under the 
FCFS and SSD scheduling strategies in an 8 × 8 × 8 mesh. 
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Fig. 4. Mean System utilization in BL, FF, TBL, and TFF under the FCFS and SSD 
scheduling strategies in an 8 × 8 × 8 mesh. 



In Figure 5, the average number of allocated sub-meshes (m ) in TBL is plotted 
against the system load for different mesh sizes under both FCFS and SSD scheduling 
strategies. It can be seen in the figure that the average number of allocated sub-
meshes (m ) is much lower than the number of processors in the mesh system (n ). It 
can also be seen in the figure that for larger mesh sizes, the results show that m  does 
not grow with n . It can also be noticed in the figure that the average number of 
allocated sub-meshes under SSD is higher than that under FCFS. In SSD, the job with 
the shortest service demand is scheduled first, meaning that allocation and 
deallocation operations are more numerous resulting in more allocated sub-meshes in 
the busy list. 
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Fig. 5. Average number of allocated sub-meshes (m ) in TBL under the FCFS and SSD 
scheduling strategies in 8 × 8 × 8 mesh, 10 × 10 × 10, and 12 × 12 × 12 mesh. 

 
Figures 6 and 7 show the average allocation and deallocation time (allocation 

overhead) for the allocation strategies against the job arrival rate in an 8 × 8 × 8 mesh 
under the two scheduling strategies FCFS and SSD. We observe that the strategies 
that depend on the busy list (TBL, BL) take much smaller allocation overhead than 
the strategies that depend on the number of processors in the mesh system (TFF, FF) 
under both FCFS and SSD scheduling strategies. In Figure 6, for example, the time 
needed to carry out the allocation and deallocation operations of TBL(FCFS) strategy 
is 9% of the time taken by these operations in TFF(FCFS) strategy under the arrival 
rate 0.075 jobs/time unit. It can also be seen in the figures that the time needed for 
both allocation and deallocation for the strategies with rotation is higher than that of 
the strategies without rotation because in the worst case, the allocation process for the 
strategies with rotation, is repeated for all possible permutations (six permutations) of 
the job request while this process is repeated only one time for the other strategies. 
Moreover, it can be seen in the figures that the difference in allocation time gets much 
more significant as the system load increases. Thus, the strategies which depend on 
the busy list for both allocation and deallocation can be said to be more effective than 
the strategies that depend on the number of processors in the mesh system. 

6   Conclusion and Future Directions 

We have compared the performance of contiguous processor allocation strategies 
proposed for 3D mesh connected multicomputer for a wide range of system load and 



     

system sizes when the distribution of job execution times is heavy-tailed (e.g. 
Bounded Pareto distribution). These allocation strategies cover a wide range of 
choices, including traditional First Fit (FF), Turning First Fit (TFF), Busy List (BL) 
approach that maintains a list of allocated sub-meshes to determine the regions 
consisting of nodes that cannot be used as base nodes for the requested sub-meshes, 
and Turning Bust List strategy (TBL), that attempts to maintain a good performance 
in terms of utilization, turnaround time, and allocation overhead.  

In this study, the allocation overhead (i.e., allocation and deallocation time) is 
taken into account. A new scheduling strategies (SSD) has been used to deal with 
heavy-tailed job execution times to avoid performance loss due to blocking that 
results from largest jobs. 

Simulation results have shown that the TBL(SSD) strategy is superior overall to all 
other strategies. It is as effective as the best competitor TFF(SSD) strategy, yet it is 
substantially more efficient. Moreover, the results have shown that the performance of 
the allocation strategies that depend on the number of allocated sub-meshes in the 
busy list (TBL and BL) is at least as good as that of the allocation strategies that 
depend on the number of processors in the mesh system in terms of average 
turnaround time and mean system utilization. The results have also shown that, the 
average allocation and deallocation time of the strategies that depend on the bust list 
(TBL and BL) is much lower than that of the other strategies that depend on, for both 
allocation and deallocation, the number of processors in the mesh system (TFF and 
FF). The results have also revealed that the rotation of the job request can greatly 
improve the performance of the contiguous allocation strategies. Moreover, the 
simulation results have shown that the effects of the SSD scheduling strategy on the 
performance of the allocation strategies is substantially better than that of the FCFS 
scheduling strategy in terms of performance parameters used in this study.  

The busy list strategies (TBL and BL) can be efficient because it is implemented 
using a busy list approach. This approach can be expected to be efficient in practice 
because job sizes typically grow with the size of the mesh. The length of the busy list 
can be expected to be small, even when the size of the mesh scales up.   

As a continuation of this research in the future, it would be interesting to 
implement the allocation strategies based on real workload traces from different 
parallel machines and compare it with our results obtained by means of simulations. 
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Fig. 6. Average allocation and deallocation times in TBL and TFF under the FCFS and 
SSD scheduling strategies in an 8 × 8 × 8 mesh. 
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Fig. 7. Average allocation and deallocation times in BL and FF under the FCFS and SSD 
scheduling strategies in an 8 × 8 × 8 mesh. 
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