Skip to main content

Understanding the Environment Through Wireless Sensor Networks

  • Conference paper
AI*IA 2007: Artificial Intelligence and Human-Oriented Computing (AI*IA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4733))

Included in the following conference series:

  • 1626 Accesses

Abstract

This paper presents a new cognitive architecture for extracting meaningful, high-level information from the environment, starting from the raw data collected by a Wireless Sensor Network. The proposed framework is capable of building rich internal representation of the sensed environment by means of intelligent data processing and correlation. Furthermore, our approach aims at integrating the connectionist, data-driven model with the symbolic one, that uses a high-level knowledge about the domain to drive the environment interpretation. To this aim, the framework exploits the notion of conceptual spaces, adopting a conceptual layer between the subsymbolic one, that processes sensory data, and the symbolic one, that describes the environment by means of a high level language; this intermediate layer plays the key role of anchoring the upper layer symbols. In order to highlight the characteristics of the proposed framework, we also describe a sample application, aiming at monitoring a forest through a Wireless Sensor Network, in order to timely detect the presence of fire.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Communication Magazine 40(8), 102–114 (2002)

    Article  Google Scholar 

  2. Zhao, F., Guibas, L.: Wireless Sensor Networks: An Information Processing Approach. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  3. He, T., Krishnamurthy, S., Luo, L., Yan, T., Gu, L., Stoleru, R., Zhou, G., Cao, Q., Vicaire, P., Stankovic, J.A., Abdelzaher, T.F., Hui, J., Krogh, B.: Vigilnet: An integrated sensor network system for energy-efficient surveillance. ACM Trans. Sen. Netw. 2(1), 1–38 (2006)

    Article  Google Scholar 

  4. Tolle, G., Polastre, J., Szewczyk, R., Culler, D., Turner, N., Tu, K., Burgess, S., Dawson, T., Buonadonna, P., Gay, D., Hong, W.: A macroscope in the redwoods. In: SenSys ’05. Proceedings of the 3rd international conference on Embedded networked sensor systems, pp. 51–63. ACM Press, New York (2005)

    Chapter  Google Scholar 

  5. Chella, A., Frixione, M., Gaglio, S.: A cognitive architecture for artificial vision. Artificial Intelligence 89(1–2), 73–111 (1997)

    Article  MATH  Google Scholar 

  6. Chella, A., Frixione, M., Gaglio, S.: Understanding dynamic scenes. Artificial Intelligence 123(1–2), 89–132 (2000)

    Article  MATH  Google Scholar 

  7. Gärdenfors, P.: Conceptual Spaces. The Geometry of Thought. MIT Press, Cambridge (2000)

    Google Scholar 

  8. Goel, S., Imielinski, T., Passarella, A.: Using buddies to live longer in a boring world. In: Proc. IEEE PerCom Workshop, Pisa, Italy, pp. 342–346. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  9. Burges, C.J.: 1. In: Data mining and knowledge discovery handbook: A complete guide for practitioners and researchers, Kluwer Academic Publishers, Boston, MA (2005)

    Google Scholar 

  10. Friedman, J., Tukey, J.: A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on Computers 23(9), 881–890 (1974)

    Article  MATH  Google Scholar 

  11. Tipping, M., Bishop, C.: Probabilistic principal component analysis. Journal of the Royal Statistical Society 61(3), 611 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  13. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  14. Meila, M., Shi, J.: Learning segmentation by random walks. Advances in Neural Information Processing Systems 13 (2001)

    Google Scholar 

  15. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  16. Cauwenberghs, C., Poggio, T.: Incremental and decremental support vector machine learning. In: NIPS. proc. of the 14th Conf. on Advances in Neural Infomation Processing Systems, pp. 409–415 (2000)

    Google Scholar 

  17. Nebel, B.: Reasoning and Revision in Hybrid Representation Systems. LNCS (LNAI), vol. 422. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  18. Brachman, R., Schmoltze, J.: An overview of the KL-ONE knowledge representation system. Cognitive Science 9(2), 171–216 (1985)

    Article  Google Scholar 

  19. Merrill, D.F., Alexander, M.E. (eds.): Glossary of Forest Fire Management Terms. Canadian Committee on Forest Fire Management. National Research Council Canada, Ottawa, Ontario, Canada (1987)

    Google Scholar 

  20. Wilson, J., Steingart, D., Romero, R., Reynolds, J., Mellers, E., Redfern, A., Lim, L., Watts, W., Patton, C., Baker, J., Wright, P.: Design of monocular head-mounted displays for increased indoor firefighting safety and efficiency. In: Proceedings of SPIE, vol. 5800, pp. 103–114. Helmet- and Head-Mounted Displays X: Technologies and Applications (May 2005)

    Google Scholar 

  21. Doolin, D.M., Sitar, N.: Wireless sensors for wildfire monitoring. In: Proceedings of the 2nd international conference on Mobile systems, applications, and services, San Diego, CA, USA (March 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roberto Basili Maria Teresa Pazienza

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gaglio, S., Gatani, L., Lo Re, G., Ortolani, M. (2007). Understanding the Environment Through Wireless Sensor Networks. In: Basili, R., Pazienza, M.T. (eds) AI*IA 2007: Artificial Intelligence and Human-Oriented Computing. AI*IA 2007. Lecture Notes in Computer Science(), vol 4733. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74782-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74782-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74781-9

  • Online ISBN: 978-3-540-74782-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics