

Edinburgh Research Explorer

Links: Web Programming Without Tiers

Citation for published version:
Cooper, E, Lindley, S, Wadler, P & Yallop, J 2006, Links: Web Programming Without Tiers. in Formal
Methods for Components and Objects: 5th International Symposium, FMCO 2006, Amsterdam, The
Netherlands, November 7-10, 2006, Revised Lectures. vol. 4709, Springer Berlin Heidelberg, pp. 266-296.
https://doi.org/10.1007/978-3-540-74792-5_12

Digital Object Identifier (DOI):
10.1007/978-3-540-74792-5_12

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Formal Methods for Components and Objects

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 19. Apr. 2024

https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-540-74792-5_12
https://www.research.ed.ac.uk/en/publications/ef5f100a-0366-4b85-8ef1-622fd7fbb53a

Links: Web Programming Without Tiers?

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop

University of Edinburgh

Abstract. Links is a programming language for web applications that generates
code for all three tiers of a web application from a single source, compiling into
JavaScript to run on the client and into SQL to run on the database. Links sup-
ports rich clients running in what has been dubbed ‘Ajax’ style, and supports
concurrent processes with statically-typed message passing. Links is scalable in
the sense that session state is preserved in the client rather than the server, in
contrast to other approaches such as Java Servlets or PLT Scheme. Client-side
concurrency in JavaScript and transfer of computation between client and server
are both supported by translation into continuation-passing style.

1 Introduction

A typical web system is organized in three tiers, each running on a separate computer
(see Figure 1). Logic on the middle-tier server generates pages to send to a front-end
browser and queries to send to a back-end database. The programmer must master a
myriad of languages: the logic is written in a mixture of Java, Perl, PHP, and Python;
the pages described in HTML, XML, and JavaScript; and the queries are written in SQL
or XQuery. There is no easy way to link these — to be sure that a form in HTML or a
query in SQL produces data of a type that the logic in Java expects. This is called the
impedance mismatch problem.

Links eliminates impedance mismatch by providing a single language for all three
tiers. In the current version, Links translates into JavaScript to run on the browser
and SQL to run on the database. The server component is written in O’Caml; it con-
sists of a static analysis phase (including Hindley-Milner typechecking), a translator to
JavaScript and SQL, and an interpreter for the Links code that remains on the server.

Increasingly, web applications designers are migrating work into the browser. “Rich
client” systems, such as Google Mail and Google Maps, use a new style of interaction
dubbed “Ajax” [11]. Client-side Links compiles into JavaScript, a functional language
widely available on most browsers. JavaScript is notoriously variable across platforms,
so we have designed the compiler to target a common subset that is widely available. It
would be easy to extend Links to support additional target languages, such as Flash or
Java. However, we expect the popularity of Ajax will mean that standard and reliable
versions of JavaScript will become available over the next few years.

Links is a strict, typed, functional language. It incorporates ideas proven in other
functional languages, including:

– database query optimization, as found in Kleisli and elsewhere,
? Submitted to FMCO ‘06

Browser
(HTML, XML,

JavaScript)

Server
(Java, Perl, PHP,
Python, Ruby)

Database
(SQL, XQuery)

response

request query

result

Fig. 1. Three-tier model

– continuations for web interaction, as found in PLT Scheme and elsewhere, and
– concurrency with message passing, as found in Erlang and elsewhere,

All three of these features work better with immutable values rather than mutable ob-
jects. In Links, side effects play a limited (though important) role, being used for up-
dates to the database and display, and communication between concurrent processes.
Types ensure consistency between forms in the browser, logic in the server, and queries
on the database; and between the sender and receiver of a message in a concurrent
program.

Links programs are scalable in the sense that session state is preserved in the client
rather than the server. Many commercial web tools (like J2EE) and most research web
tools (including current releases of PLT Scheme [15] and Mozart QHTML [9]) are not
scalable in this sense.

In Links, all server state is serialized and passed to the client, then restored to the
server when required. This resumption passing style extends the continuation passing
style commonly used in PLT Scheme and elsewhere. Links functions are labelled as to
whether they are intended to execute on the client or the server; functions running on
the client may invoke those on the server, and vice-versa.

Database programming. Queries are written in the Links notation and compiled into
SQL, a technique pioneered by Kleisli [7, 35] and now used in LINQ [18].

Web interaction. The notion that a programming language could provide support for
web interaction first appears in the programming language MAWL [1]. The notion of
continuation from functional programming has been particularly fruitful, being applied
by a number of researchers to improve interaction with a web client, including Quiennec
[25], Graham [13] (in a commercial system sold to Yahoo and widely used for building
web stores), Felleisen and others [14, 15], and Thiemann [31].

Concurrency. Links supports concurrent programming in the client, using “share noth-
ing” concurrency where the only way processes can exchange data is by message pass-
ing, as pioneered in Erlang [2] and Mozart [32].

XML programming. Links provides convenient syntax for constructing XML data, sim-
ilar to that provided by XQuery [36]. The current version does not support regular ex-
pression types, as found in XDuce and other languages, but we may add them in a future
version. Regular expression types were given a low priority, because they are already
well understood from previous research [19].

Other languages. Other languages for web programming include Xtatic [16], Scala
[22], Mozart [9], SML.NET [5], F] [30], Cω (based on Polyphonic C] [4] and Xen [6]),
HOP [29], Ocsigen [3]. These languages have many overlaps with Links, as they are
also inspired by the functional programming community.

However, none of these languages shares Links’ objective of generating code for
all three tiers of a web application from a single source — scripts for the front-end
client, logic for the middle-tier server, and queries for the back-end database. We expect
that providing a single, unified language as an alternative to the current multiplicity of
languages will be a principal attraction of Links.

This paper. We introduce Links by describing three examples in Section 2. Section 3
sketches our implementation of concurrency and client-server interaction. Section 4
gives an SQL-compilable subset of Links and details how it is compiled into SQL,
while Section 5 describes typing for processes. Section 6 discusses some shortcomings
of the current implementation and Section 7 concludes.

2 Links by example

This section introduces Links by a series of examples. The reader is encouraged to try
these examples online at

http://groups.inf.ed.ac.uk/links/examples/

We begin with a dictionary-suggest example to introduce the basic functionality of
Links, and then present two further examples that demonstrate additional capabilities:
a draggable list, and a progress bar.

2.1 Dictionary suggest

The dictionary suggest application presents a text box, into which the user may type a
word. As the user types, the application displays a list of words that could complete the
one being typed. A dictionary database is searched, and the first ten words beginning
with the same prefix as the typed word are presented (see Figure 2). In addition, the
user can add, update and delete definitions. To add a new definition the user fills in
and submits the form at the bottom of the page by clicking ‘Add’. To update an existing
definition the user clicks on one of the suggestions, which replaces the suggestion with a
form containing the existing definition, and then edits and submits the form by clicking
‘Update’. This form also includes buttons for cancelling the update (which restores the
original suggestion) and deleting the definition.

Fig. 2. Dictionary suggest

This application is of interest because it must perform a database lookup and update
the display at every keystroke. Applications such as Google Suggest [17] have a similar
structure.

The Links version is based on an ASP.NET version of the same application, avail-
able online [21], using the same dictionary and formatting. It extends the ASP.NET
version by allowing the definitions to be added, updated and deleted. The dictionary
contains 99,320 entries. Links is acceptably fast for this application, and response times
for the Links and ASP.NET versions appear identical. (However, we have only tested
with a lightly loaded server.)

The code for the application is shown in Figures 3–5; following is a short walk-
through of the code. On each keystroke, a Suggest message containing the current
contents of the text field is sent to the handler process. The handler process passes
the text content to the function suggest. This function calls completions on the
server to find the first ten words with the given prefix, and format on the client to
format the list returned. Doing the server interaction in a separate handler process
allows the user interaction to remain responsive, even while looking up suggestions.

var defsTable =
table "definitions" with
(id:String, word:String, meaning:String)
where id readonly from database "dictionary";

fun newDef(def) server { insert defsTable values [def] }
fun updateDef(def) server {
update (var d <-- defsTable) where (d.id == def.id)
set (word=def.word, meaning=def.meaning)

}
fun deleteDef(id) server {
delete (var def <-- defsTable) where (def.id == id)
}

fun completions(s) server {
if (s == "") [] else {
take(10, for (var def <-- defsTable)

where (def.word ˜ /s.*/) orderby (def.word)
[def])

}
}

fun suggest(s) client {
replaceChildren(format(completions(s)),

getNodeById("suggestions"))
}

fun editDef(def) client {
redraw(
<form l:onsubmit="{
var def = (id=def.id, word=w, meaning=m); updateDef(def);
redraw(formatDef(def), def.id)}" method="POST">
<table>
<tr><td>Word:</td><td>
<input l:name="w" value="{def.word}"/></td></tr>

<tr><td>Meaning:</td><td>
<textarea l:name="m" rows="5" cols="80">
{stringToXml(def.meaning)}</textarea></td></tr>

</table>
<button type="submit">Update</button>
<button l:onclick="{redraw(formatDef(def), def.id)}">
Cancel</button>
<button l:onclick="{deleteDef(def.id); redraw([],def.id)}"
style="position:absolute; right:0px">Delete</button>

</form>,
def.id)

}

Fig. 3. Dictionary suggest in Links (1)

fun redraw(xml, defId) client {
replaceChildren(xml, getNodeById("def:"++defId))
}

fun formatDef(def) client {

{stringToXml(def.word)}
{stringToXml(def.meaning)}

}

fun format(defs) client {
<#>
<h3>Click a definition to edit it</h3>
for (var def <- defs)
{formatDef(def)}

</#>
}

fun addForm(handler) client {
<form l:onsubmit="{handler!NewDef((word=w, meaning=m))}">
<table>
<tr><td>Word:</td><td>
<input type="text" l:name="w"/></td></tr>
<tr><td>Meaning:</td><td>
<textarea l:name="m" rows="5" cols="80"/></td></tr>
<tr><td><button type="submit">Add</button></td></tr>
</table>
</form>
}

var handler = spawn {
fun receiver(s) {
receive {
case Suggest(s) -> suggest(s); receiver(s)
case NewDef(def) ->
newDef(def);
replaceChildren(addForm(self()), getNodeById("add"));
suggest(s); receiver(s)

}
}
receiver("")
};

Fig. 4. Dictionary suggest in Links (2)

<html>
<head>
<style>.def {{ color:blue }}</style>
<title>Dictionary suggest</title>
</head>
<body>
<h1>Dictionary suggest</h1>
<h3>Search for definitions</h3>
<form l:onkeyup="{handler!Suggest(s)}">
<input type="text" l:name="s" autocomplete="off"/>
</form>
<div id="suggestions"/>
<h3>New definition</h3>
<div id="add">{addForm(handler)}</div>
</body>
</html>

Fig. 5. Dictionary suggest in Links (3)

The rest of the code is concerned with modifying the database. A form for adding
definitions is created by the function addForm. Clicking ‘Add’ sends a NewDef mes-
sage to the handler process containing a new definition. The handler process calls
newDef to add the definition, resets the form and updates the list of suggestions (in
case the new definition appears in the current list of suggestions).

Clicking on a definition invokes the function editDef, which calls the function
redraw in order to replace the definition with a form for editing it. Clicking ‘Cancel’
reverses this operation. Clicking ‘Update’ or ‘Delete’ performs the corresponding mod-
ification to the definition by calling updateDef or deleteDef on the server, and
then updates the list of suggestions by calling the function redraw on the client.

Syntax. The syntax of Links resembles that of JavaScript. This decision was made not
because we are particularly fond of this syntax, but because we believe it will be familiar
to our target audience. Low-level syntactic details become a matter of habit that can be
hard to change: we conjecture that using the familiar f(x,y) in place of the unfamiliar
f x y will significantly lower the barrier to entry of functional programming.

One difference from JavaScript syntax is that we do not use the keyword return,
which is too heavy to support a functional style. Instead, we indicate return values subtly
(perhaps too subtly), by omitting the trailing semicolon.

Types. Links uses Hindley-Milner type inference with row variables [24]. As basic
types Links supports integers, floats, characters, booleans, lists, functions, records, and
variants.

– A list is written [e1,...,ek], and a list type is written [A].
– A lambda abstraction is written fun(x1,...,xk){e}, and a function type is

written (A1,...,Ak)->B.

– A record is written (f1=e1,...,fk=ek), and a record type is written
(f1:A1,...,fk:Ak |r), where r is an optional row variable. Field names for
records begin with a lower-case letter.

– A variant is written Fi(ei) and a variant type is written
[|F1:A1,...,Fk:Ak|r|]. Field names for variants begin with an upper-
case letter.

Strings are lists of characters (as in Haskell), and tuples are records with natural number
labels (as in SML). Apart from the table declaration in Figure 3, none of the examples
in the paper explicitly mention types. This is partly because type inference renders type
annotations unnecessary and partly to save space. Nevertheless, it should be stressed
that all of the examples are type-checked statically, and static typing is an essential part
of Links.

Links currently does not support any form of overloading; we expect to support
overloading in future using a simplified form of type classes. As with regular expression
types, this was left to the future because it is well understood from other research efforts.
In particular, the WASH and iData systems make effective use of type classes to support
generic libraries [31, 23].

XML. Links includes special syntax for constructing and manipulating XML data.
XML data is written in ordinary XML notation, using curly braces to indicate embed-
ded code. Embedded code may occur either in attributes or in the body of an element.
The Links notation is similar to that used in XQuery, and has similar advantages. In
particular, it is easy to paste XML boilerplate into Links code. The parser begins pars-
ing XML when a < is immediately followed by a legal tag name; a space must always
follow < when it is used as a comparison operator; legal XML does not permit a space
after the < that opens a tag. Links also supports syntactic sugar <#> ... </#> for
specifying an XML forest literal as in the function format in Figure 4.

The client maintains an XML tree representing the current document to display;
usually this will be in XHTML, the dialect of XML corresponding to HTML. This dis-
tinguished tree is referred to as the Document Object Model, or DOM for short. Links
provides library functions to access and modify the DOM, based on the similar opera-
tions specified by the W3C DOM standard. Links supports two types for manipulating
XML: DomNode is a mutable reference (similar to a ref type in ML), while Xml is
an immutable list of trees. There is an operation that converts the former to the latter
by making a deep copy of the tree rooted at the node, returning it in a singleton list.
We expect eventually to support regular expression types for XML that refine each of
these two types, and to support a notation like XPath for manipulating trees, but as
these points are well understood (but a lot of work to implement) they are not a current
priority.

Regular expressions. Matching a string against a regular expression is written e˜/r/
where r is a regular expression. Curly braces may be used to interpolate a string into a
regular expression, so for example /{s}.*/ matches any string that begins with the
value bound to the variable s.

Interaction. The Links code specifies display of an XML document, the crucial part of
which is the following:

<form l:onkeyup="{handler!Suggest(s)}">
<input type="text" l:name="s" autocomplete="off"/>
</form>
<div id="suggestions"/>

The l:name attribute specifies that the string typed into the field should be bound to a
string variable s.

The attributes l:name and l:onkeyup are special. The attribue l:onkeyup
is followed by Links code in curly braces that is not immediately evaluated, but is
evaluated whenever a key is released while typing in the form. (Normally, including
curly braces in XML attributes, as elsewhere in XML, causes the Links code inside the
braces to be evaluated and its value to be spliced into the XML.) The l:name attribute
on an input field must contain a Links variable name, and that variable is bound to the
contents of the input field.

The attributes that Links treats specially are l:name and all the attributes con-
nected with events: l:onchange, l:onsubmit, l:onkeyup, l:onmousemove,
and so on. These attributes are prefixed with l:, using the usual XML notation for
namespaces; in effect, l denotes a special Links namespace.

The scope of variables bound by l:name is the Links code that appears in the
attributes connected with events. Links static checking ensures that a static error is
raised if a name is used outside of its scope; this guarantees that the names mentioned
on the form connect properly to the names referred to by the application logic. In this,
Links resembles MAWL and Jwig, and differs from PLT Scheme or PHP.

Our experience has shown that this style of interaction does not necessarily scale
well, and it may be preferable to use a library of higher-order forms as developed in
WASH or iData. We return to this point in the Section 6.

List comprehensions. The Links code calls the function suggest each time a key
is released. This in turn calls completions to find the first ten completions of the
prefix, and format to format the results as HTML for display. Both completions
and format use for loops, in the former case also involving where and orderby
clauses. These constructs correspond to what is written as a list comprehension in lan-
guages such as Haskell or Python. Each comprehension is equivalent to an ordinary
expression using standard library functions, we give three examples, where the com-
prehension is on the left and its translation is on the right.

for (var x <- e1)
e2

concatMap(fun(x){e2},e1)

for (var x <- e1)
where (e2)
e3

concatMap(
fun(x){if (e2) e3 else []},
e1)

for (var x <- e1)
orderby (e2)
e3

concatMap(
fun(x){e3},
orderBy(fun(x){e2},e1))

Here concatMap(f,xs) applies function f to each element in list xs and concate-
nates the results, and orderBy(f,xs) sorts the list xs so that it is in ascending order
after f is applied to each element. The orderby notation is conceptually easier for the
user (since there is no need to repeat the bound variables) and technically easier for the
compiler (because it is closer to the SQL notation that we compile into, as discussed
in the next section; indeed, currently orderby clauses only work reliably in code that
compiles into SQL, because the absence of overloading means we have not yet imple-
mented comparison on arbitrary types in the client or server).

Database. Links provides facilities to query and update SQL databases, where database
tables are viewed as lists of records. We hope to provide similar facilities for XQuery
databases in the future.

Links provides a database expression that denotes a connection to a database,
and a table expression that denotes a table within a database. A database is specified
by name (and optional configuration data, which is usually read from a configuration
file), and a table is specified by the table name, the type signature of a row in the table,
and the database containing the table.

The type of a table is distinct from the type of its list of records, since tables
(unlike lists) may be updated. The coercion operation asList takes a table into the
corresponding list, and for(varx<--e1)e2 (with a long arrow) is equivalent to
for(varx<-asList(e1))e2 (with an ordinary arrow).

In the following example, there is a table of words, where each row contains three
string fields, the word itself, its type (noun, verb, and so on), and its meaning (defini-
tion). Typically, one expresses queries using the Links constructs such as for, where,
and orderby, and functions on lists such as take and drop. The Links compiler is
designed to convert these into appropriate SQL queries over the relevant tables when-
ever possible. For example, the expression

take(10, for (var def <-- defsTable)
where (def.word ˜ /s.*/) orderby (def.word)
[def])

compiles into the equivalent SQL statement
SELECT def.meaning AS meaning, def.word AS word
FROM definitions AS def
WHERE def.word LIKE ’{s}%’
ORDER BY def.word ASC
LIMIT 10 OFFSET 0

This form of compilation was pioneered in systems such as Kleisli [7, 35], and is also
central to Microsoft’s new Language Integrated Query (LINQ) for .NET [18]. A re-
lated approach, based on abstract interpretation rather than program transformation, is
described by Wiederman and Cook [34].

Note that the match operator ˜ on regular expressions in Links is in this case com-
piled into the LIKE operator of SQL, and that the call to take in Links is compiled
into LIMIT and OFFSET clauses in SQL. At run time, the phrase {s} in the SQL is
replaced by the string contained in the variable s, including escaping of special charac-
ters where necessary. Links also contains statements to update, delete from, and insert
into a database table, closely modeled on the same statements in SQL.

The LIMIT and OFFSET clauses are not part of the SQL standard, but are available
in PostgreSQL, MySQL, and SQLite, the three targets currently supported by Links.
For non-standard features such as this, Links can generate different code for different
targets; for instance, it generates different variants of INSERT for PostgreSQL and
MySQL.

Section 4 presents a subset of Links that is guaranteed to compile into SQL queries.

Concurrency. Links allows one to spawn new processes. The expression spawn{e}
creates a new process and returns a fresh process identifier, the primitive self() re-
turns the identifier of the current process, the command e1!e2 sends message e2 to
the process identified by e1, and the expression

receive {
case p1 -> e1
...
case pn -> en

}

extracts the next message sent to the current process (or waits if there is no message),
and executes the first case where the pattern matches the message. (Unlike Erlang, it is
an error if no case matches, which fits better with our discipline of static typing.)

By convention, the messages sent to a process belong to a variant type. Event han-
dlers are expected to execute quickly, so we follow a convention that each handler ei-
ther sends a message or spawns a fresh process. For instance, in the dictionary suggest
application, each event handler sends a message to a separate handler process that is
responsible for finding and displaying the completions of the current prefix. This puts
any delay resulting from the database lookup into a separate process, so any keystroke
will be echoed immediately. Furthermore, the messages received by the handler process
are processed sequentially, ensuring that the updates to the DOM happen in the correct
order.

As well as any new processes spawned by the user, there is one distinguished pro-
cess: the main process. The top-level program and all event handlers are run in the main
process. Having all event handlers run in a single process allows us to guarantee that
events are processed in the order in which they are received.

Client-server. The keyword server in the definition of completions causes in-
vocations of that function to be evaluated on the server rather than the client, which is
required because the database cannot be accessed directly from the client.

When the dictionary suggest application is invoked, the server does nothing except
to transmit the Links code (compiled into JavaScript) to the client. If the user presses
and releases a key then the suggest function will continue to run on the client as
its definition is annotated with the keyword client. The client runs autonomously
until completions is called, at which point the XMLHttpRequest primitive of
JavaScript is used to transmit the arguments to the server and creates a new process on
the server to evaluate the call. No server resources are required until completions is
called. This contrasts with Java Servlets, which keep a process running on the server at
all times, or with PLT Scheme, which keeps a continuation cached on the server.

Location annotations server and client are only allowed on top-level function
definitions. If a top-level function definition does not have a location annotation then it

Fig. 6. Draggable list: before and after dragging

will be compiled for both the client and the server. A location annotation should be read
as “this function must be run in the specified location”. The implementation strategy for
client-server communication is discussed further in Section 3.

2.2 Draggable list

The draggable list application displays an itemized list on the screen. The user may
click on any item in the list and drag it to another location in the list (see Figure 6).

The code for draggable list is shown in Figure 7. The example exploits Links’ ability
to run concurrent processes in the client. Each draggable list is monitored by a separate
process.

Each significant event on an item in the list (mouse up, mouse down, mouse out)
has attached to it code that sends a message to the process indicating the event. The
process itself is represented by two mutually recursive functions, corresponding to two
states. The process starts in the waiting state; when the mouse is depressed it changes to
the dragging state; and when the mouse is released it reverts to the waiting state. When
the mouse is moved over an adjacent item while in the dragging state, the dragged item
and the adjacent item are swapped.

The function corresponding to the waiting state takes as a parameter the id of the
element containing the draggable list; the function corresponding to the dragging state
takes the same parameter, and a second parameter indicating the item currently being
dragged. Both functions are written in tail recursive style, each either calling itself (to
remain in that state) or the other (to change state). This style of coding state for a process
was taken from Erlang.

In this simple application, the state of the list can be recovered just by examining
the text items in the list. In a more sophisticated application, one might wish to add
another parameter representing the abstract contents of the list, which might be distinct
from the items that appear in the display.

Observe that the code has been written so that there can be multiple draggable lists,
each monitored by its own process.

fun waiting(id) {
receive {
case MouseDown(elem) ->
if (isElementNode(elem)

&& (parentNode(elem) == getNodeById(id)))
dragging(id,elem)

else waiting(id)
case MouseUp -> waiting(id)
case MouseOver(newElem) -> waiting(id)
}
}

fun dragging(id,elem) {
receive {
case MouseUp -> waiting(id)
case MouseDown(elem) ->
if (isElementNode(elem)

&& (parentNode(elem) == getNodeById(id)))
dragging(id,elem)

case MouseOut(toElem) ->
if (isElementNode(toElem)

&& (parentNode(elem) == getNodeById(id)))
{swapNodes(elem,toElem); dragging(id,elem)}
else dragging(id,elem)

}
}

fun draggableList (id,items) client {
var dragger = spawn { waiting(id) };
<ul id="{id}"
l:onmouseup="{dragger!MouseUp}"
l:onmouseuppage="{dragger!MouseUp}"
l:onmousedown="{dragger!MouseDown(getTarget(event))}"
l:onmouseout="{dragger!MouseOut(getToElement(event))}">
{ for (var item <- items) { item } }

}

<html><body>
<h1>Draggable lists</h1>
<h2>Great Bears</h2>
{
draggableList("bears",

["Pooh", "Paddington", "Rupert", "Edward"])
}
</body></html>

Fig. 7. Draggable lists in Links

Fig. 8. Progress bar

Fig. 9. Progress bar displaying the final answer

2.3 Progress bar

The progress bar demonstrates an application where computation bounces back and
forth between client and server. A computation is performed on the server, and the
progress of this computation is demonstrated with a progress bar (see Figure 8). When
the computation is completed, the answer is displayed (see Figure 9).

The code for the progress bar application is shown in Figure 10. In this case, the
computation performed on the server is uninteresting, simply counting up to the number
typed by the user. In a real application the actual computation chosen might be more
interesting.

Periodically, the function computation (running on the server) invokes the func-
tion showProgress (running on the client) to update the display to indicate progress.
When this happens, the state of the computation on the server is pickled and transmitted
to the client. This is done by applying continuation passing style and defunctionaliza-
tion to the code on the server; the client is passed the name of a function corresponding
to the continuation of the computation, and the data needed to continue the computa-
tion. Note that no state whatsoever is maintained on the server when computation is
moved to the client. The implementation is discussed in more detail in Section 3.

One advantage of writing the computation in this way is that if the client quits at
some point during the computation (either by surfing to another page, terminating the
browser, or taking a hammer to the hardware) then no further work will be required of
the server.

On the other hand, the middle of an intensive computation may not be the best time
to pickle the computation and ship it elsewhere. A more sophisticated design would
asynchronously notify the client while continuing to run on the server, terminating the
computation if the client does not respond to progress updates after a reasonable inter-
val. This is not possible currently, because the design of Links deliberately limits the
ways in which the server can communicate with the client, in order to guarantee that
long-term session state is maintained on the client rather than the server. This is not

fun compute(count, total) server {
if (count < total) {
showProgress(count, total);
compute(count+1, total)
} else "done counting to " ++ intToString(total)
}

fun showProgress(count, total) client {
var percent =
100.0 *. intToFloat(count) /. intToFloat(total);
replaceNode(
<div id="bar"

style="width:floatToString(percent)%;
background-color: black">|</div>,

getNodeById("bar")
)
}

fun showAnswer(answer) client {
domReplaceNode(
<div id="bar">{stringToXml(answer)}</div>
getNodeById("bar")
);
}

<html>
<body id="body">
<form l:onsubmit=
"{showAnswer(compute(0,stringToInt(n)))}">
<input type="text" l:name="n"/>
<input type="submit"/>
</form>
<div id="bar"/>
</body>
</html>

Fig. 10. Progress bar in Links

appropriate in all circumstances, and future work on Links will need to consider a more
general design.

3 Client-server computing

A Links program can be seen as a distributed program that executes across two lo-
cations: a client (browser) and a server. The programmer can optionally annotate a
function definition to indicate where it should run. Functions on the client can invoke
functions on the server, and vice-versa.

Call to f (server)

Call to g (client)

Return r from g

Return s from f

{Call f}

{Call g, k}

{Continue r, k}

{Return s}

main Client Server

Source language:
call/return style

Implementation:
request/response style

f g

Fig. 11. Semantic behaviour of client/server annotations

This symmetry is implemented on top of the asymmetric mechanisms made avail-
able by web browsers and servers. Current standards only permit the browser to invoke
a function on the server. The server can return a value to the browser when done, but
there is no provision for the server to invoke a function on the browser directly.

Our implementation is also scalable, in the sense that session state is preserved in
the client rather than the server. Since server resources are at a premium in the web en-
vironment, our implementation requires no server resources unless the server is actively
doing work.

We achieve this by using a variation of continuation-passing style, which we call
resumption-passing style. It is now common on the web to use continuations to “invert
back the inversion of control” [26], permitting a process server to retain control after
sending a form to the client. Here, we permit a process on the server to retain control
after invoking an arbitrary function on the client.

Figure 11 shows how the call/return style of programming offered by Links differs
from the standard request/response style, and how request/response style can emulate
the call/return style. The left-hand diagram shows a sequence of calls between functions
annotated with “client” and “server.” The solid line indicates the active thread of control
as it descends into these calls, while the dashed line indicates a stack frame which is
waiting for a function to return. In this example, main is a client function which calls a
server function f which in turn calls a client function g. The semantics of this call and
return pattern are familiar to every programmer.

The right-hand diagram shows the same series of calls as they are implemented.
The dashed line here indicates that some local storage is being used as part of this
computation. During the time when g has been invoked but has not yet returned a value,
the server stores nothing locally, even though the language provides an illusion that f
is “still waiting” on the server. All of the server’s state is encapsulated in the value k,
which it passed to the client with its call.

To accomplish this, the program is compiled to two targets, one for each location,
and begins running at the client. In this compilation step, server-annotated code is re-

placed on the client by a remote procedure call to the server. This RPC call makes an
HTTP request indicating the server function and its arguments. The client-side thread
is effectively suspended while the server function executes.

Likewise, on the server side, a client function is replaced by a stub. This time, how-
ever, the stub will not make a direct call to the client, since in general web browsers are
not addressable by outside agents. However, since the server is always working on be-
half of a client request, we have a channel on which to communicate. So the stub simply
gives an HTTP response indicating the server-to-client call, along with a representation
of the server’s continuation, to be resumed when the server-to-client call is complete.
Upon returning in this way, all of the state of the Links program is present at the client,
so the server need not store anything more.

When the client has completed the server-to-client call, it initiates a new request
to the server, passing the result and the server continuation. The server resumes its
computation by applying the continuation.

3.1 Client-side Concurrency

A Links program is concurrent. We implement concurrency on the client, even though
JavaScript does not contain primitives to support concurrency. Concurrency, client-to-
server communication and server-to-client communication are implemented using the
following techniques:

– compiling to continuation-passing style,
– inserting explicit context-switch instructions,
– registering asynchronous remote calls using XMLHttpRequest,
– eliminating the stack between context switches using either setTimeout or a

trampoline.

Producing JavaScript code in CPS allows us to reify each process’s control state.
The compiler wraps every function application and every continuation application in
special “yield” functions. After a certain number of calls to “yield” the current continu-
ation is added to the JavaScript VM’s collection of timeout callbacks allowing another
continuation to run. This is implemented by calling the setTimeout primitive of
JavaScript, which registers a callback to be invoked after a specified period of time.

The “yield” function for function application is shown in Figure 12.1 The variable
_yieldGranularity determines how often to yield to other processes. After every
_yieldGranularity calls to _yield and _yieldCont control is relinquished
using one of two methods.

– If execution is outside an event handler, then the built-in setTimeout func-
tion is invoked with a callback that sets the process id and then calls f(a, k).
Calling setTimeout allows other processes to run. The _sched_pause pa-
rameter specifies a lower bound on how long to wait before allowing this call-
back to run. For older browsers _sched_pause must be non-zero, otherwise

1 The “yield” function for continuation application is the same except it takes as arguments
continuation k and value a, and the function applications f(a, k) are replaced with con-
tinuation applications k(a).

the callback may be run immediately and other callbacks may not get a chance
to run. For newer browsers _sched_pause may be set to zero, as the callback
is placed at the back of a queue of setTimeout callbacks. Typical JavaScript
implementations do not use tail-call elimination, and have a severely limited call
stack. Our use of setTimeout also sidesteps this limitation, since setTimeout
discards the current stack. In our case the stack contains only tail calls that we need
never return to, so this reclaims memory while retaining the desired behaviour. The
timeout also provides an opportunity for the event handler or any callbacks from
XMLHttpRequest to run.

– Inside an event handler execution is synchronous, allowing events to be handled
atomically. In order to prevent event handlers from blocking concurrency, we rec-
ommend that they be short-lived (ideally just send a message or spawn a new pro-
cess). Although event-handling is synchronous, it is still important to make sure
that the browser does not run out of stack. Although running out of stack inside
event handlers is unlikely to be a problem if programmers follow our guidelines, a
trampoline is provided just in case. In order to yield, an exception is thrown con-
taining the current continuation. Throwing the exception unwinds the stack. The
trampoline catches the exception and then invokes the continuation. The trampo-
line is shown in Figure 13.

Unsurprisingly, the output of the CPS-translating compiler is slower than compara-
ble direct style code. The performance penalty is significant but not disastrous: the total
run-time of programs we measured was within an order of magnitude of equivalent
hand-written JavaScript versions.

function _yield(f, a, k) {
++_yieldCount;
if ((_yieldCount % _yieldGranularity) == 0) {
if (!_handlingEvent) {
var current_pid = _current_pid;
setTimeout((function() {

_current_pid = current_pid;
f(a, k)}),

_sched_pause);
}
else {
throw new _Continuation(function () { f(a,k) });

}
}
else {
return f(a,k);

}
}

Fig. 12. The yield function

function _Continuation(v) { this.v = v }

function _wrapEventHandler(handler) {
return function(event) {
var active_pid = _current_pid;
_current_pid = _mainPid;
_handlingEvent = true;
var cont = function () { handler(event) }
for (;;) {
try {
cont();
_handlingEvent = false;
_current_pid = active_pid;
return;

}
catch (e) {
if (e instanceof _Continuation) {

cont = e.v;
continue;

}
else {
_handlingEvent = false;
_current_pid = active_pid;
throw e;

}
}

}
}

}

Fig. 13. The event handler trampoline

Client-to-server calls are implemented using the asynchronous form of the function
XMLHttpRequest, to which we pass a callback function that invokes the continua-
tion of the calling process.

3.2 Related work: continuations for web programming

The idea of using continuations as a language-level technique to structure web programs
has been discussed in the literature [25, 26] and used in several web frameworks (such
as Seaside, Borges, PLT Scheme, RIFE and Jetty) and applications, such as ViaWeb’s
e-commerce application [12], which became Yahoo! Stores. Most these take advantage
of a call/cc primitive in the source language, although some implement a continuation-
like object in other ways. Each of these systems creates URLs which correspond to
continuation objects. The most common technique for establishing this correspondence
is to store the continuation in memory, associated with a unique identifier which is
included as part of the URL.

Relying on in-memory tables makes such a system vulnerable to system failures
and difficult to distribute across multiple machines. Whether stored in memory or in a
database, the continuations can require a lot of storage. Since URLs can live long in
bookmarks, emails, and other media, it is impossible to predict for how long a contin-
uation should be retained. Most of the above frameworks destroy a continuation after
a given period of time. Even with a modest lifetime, server storage needs can be quite
high, as each request may generate many continuations and there may be many simul-
taneous users.

Our approach differs from these implementations by following the approach de-
scribed by the PLT Scheme team [14]. Rather than storing a continuation object at the
server and referring to it by ID, we serialize continuations and embed them completely
in URLs and hidden form variables. To make this efficient, we assume that the program
itself is fixed over time. Then we can defunctionalize the continuation object ([27]),
replacing functions with unique identifiers. The resulting representation only identifies
the closures which need to execute in the future of the computation, and the dynamic
data needed by those closures.

4 Query compilation

A subset of Links expressions compiles precisely to a subset of SQL expressions. Fig-
ure 14 gives the grammar of the SQL-compilable subset of Links expressions and Fig-
ure 15 gives the grammar for the subset of SQL to which we compile.

All terms are identified up to α-conversion (that is up to renaming of bound vari-
ables, field names and table aliases). We allow free variables in queries, though they
are not strictly allowed in SQL. Values for these variables will be supplied either at
compile time, during query rewriting, or else at runtime. We use vector notation v̄ to
mean v1 ,...,vk, where 1 ≤ k and abuse vector notation in the obvious way in
order to denote tuples, record patterns and lists of tables. For uniformity, we write an
empty ‘from’ clause as from •. In standard SQL the clause would be omitted alto-
gether. We assume a single database db, and write table t with (f1,...,fk)
for asList(table t where (f1:A1,...,fk:Ak) from db).

(expressions) e ::= take(n, e) | drop(n, e) | s

(simple expressions) s ::= for (pat <- s) s
| let x = b in s
| where (b) s
| table t with f̄
| [(b̄)]

(basic expressions) b ::= b1 op b2

| not b
| x
| lit
| z.f

(patterns) pat ::= z | (f̄=x̄)

(operators) op ::= like | > | = | < | <> | and | or

(literal values) lit ::= true | false | string-literal | n

(finite integers) i, m, n

(field names) f, g

(variables) x, y

(record variables) z

(table names) t

Fig. 14. Grammar of an SQL-compilable subset of Links.

(queries) q ::= select Q limit ninf offset n

(query bodies) Q ::= cols from tables where c

(column lists) cols ::= c̄

(table lists) tables ::= t̄ as ā | •

(SQL expressions) c, d ::= c op d
| not c
| x
| lit
| a.f

(integers) ninf ::= n | ∞

(table aliases) a

Fig. 15. The SQL grammar that results from query compilation.

TABLE

table t with f̄
−→ (a is fresh)
select a.f̄ from t as a where true limit ∞ offset 0

LET

let x = b in s −→ s[b/x]

TUPLE

[(b̄)] −→ select b̄ from • where true limit ∞ offset 0

JOIN

for ((f̄=x̄) <-
select c̄1 from t̄1 as ā1 where d1 limit ∞ offset 0)
select c̄2 from t̄2 as ā2 where d2 limit ∞ offset 0

−→ (ā1 and ā2 are disjoint)
select c̄2[c̄1/x̄] from t̄1 as ā1, t̄2 as ā2

where d1 and d2[c̄1/x̄] limit ∞ offset 0

WHERE

where (b) (select c̄ from t̄ as ā where d limit m offset n)
−→
select c̄ from t̄ as ā where d and b limit m offset n

RECORD

for (z <- select c̄ from t̄ as ā where d limit m offset n) s
−→ (x̄ not free in s)
for ((f̄=x̄) <- select c̄ from t̄ as ā

where d limit m offset n) s[x̄/z.f̄]

TAKE

take(i, select Q limit m offset n)
−→
select Q limit min(m,i) offset n

DROP

drop(i, select Q limit m offset n)
−→
select Q limit m-i offset n+i

DROP∞
drop (i, select Q limit ∞ offset n)

−→
select Q limit ∞ offset n+i

Fig. 16. Database rewrite rules

Any expression e can be transformed into an equivalent SQL query by repeated ap-
plication of the rewrite rules given in Figure 16. To give the rewriting process sufficient
freedom, we extend the non-terminal s from Figure 14 to give ourselves a working
grammar.

s ::= ... | q

We write s[b/x] for the substitution of b for x in s. Again we abuse the vector
notation in the obvious way in order to denote simultaneous pointwise substitution.
Note that min is a meta language (i.e. compiler) operation that returns the minimum of
two integers, and not part of the target language.

Proposition 1. The database rewrite rules are strongly normalising and confluent.

Proof. Define the size |e| of an expression e as follows.

|take(n, s)| = 1 + |s|
|drop(n, s)| = 1 + |s|

|for (x <- s1) s2| = 2 + |s1|+ |s2|
|for ((f̄ = x̄) <- s1) s2| = 1 + |s1|+ |s2|

|let x = b in s| = 1 + |s|
|where (b) s| = 1 + |s|

|table t| = 1
|[(b)]| = 1

Each rewrite rule strictly reduces the size of an expression, thus the rules are strongly
normalising. The rewrite rules are orthogonal and hence weakly confluent. Confluence
follows as a direct consequences of weak confluence and strong normalisation.

5 Statically typed message passing

Concurrency in Links is based on processes that send messages to mailboxes. We here
present a tiny core calculus to capture the essence of process and message typing in
Links. We let A,B, C, D range over types, s, t, u range over terms, and x range over
variables. A type is either the empty type 0; unit type 1; a process type P (A), for a
process that accepts messages of type A; or a function type A →C B, for a function
with argument of type A, result of type B, and that may accept messages of type C
when evaluated. Links also supports record types and variant types (using row typing),
but as those are standard we don’t describe them here. Typically, a process will receive
messages belonging to a variant type, and we use the empty variant type (which is
isomorphic to the empty type 0) to assert that a function does not receive messages.

A typing judgement has the form Γ ;C ` t : A, where Γ is a typing context pairing
variables with types, C is the type of messages that may be accepted during execution
of the term, t is the term, and A is the type of the term.

The typing rules are shown in Figure 17. The rules for variables and the constant
of unit type are standard. The type of a lambda abstraction is labelled with the type
C of messages that may be received by its body, where the context of the abstraction

may accept messages of an unrelated type D; while the function in an application must
receive messages of the same type C as the context in which it is applied.

If t is a term of unit type that receives messages of type C, then spawn t returns a
fresh process identifier of type P (C), where the context of the spawn may receive mes-
sages of an unrelated type D. The term self returns the process identifier of the current
process, and so has type P (C) when it appears in a context that accepts messages of
type C. If s is a term yielding a process identifier of type P (D) and t is a term of type
D, then send s t is a term of unit type that sends the message t to the process identi-
fied by s; it evaluates in a context that may receive messages of an unrelated type C.
Finally, the term receive returns a value of type C when it is executed in a context that
may receive messages of type C.

Links syntax differs slightly from the core calculus. The type A →C B is written
A -{C}-> B, or just A -> B when C is unspecified. The core expression self is
written as a function call self(), the core expression send t u is written t!u, and the
Links expression

receive {
case p1 -> e1
...
case pn -> en

}

corresponds to a switch on the value returned by the receive operator.
We give a formal semantics for the typed message-passing calculus via a translation

into λ(fut), Niehren et al’s concurrent extension of call-by-value λ-calculus [20]. For
our purposes we need not consider all of the details of λ(fut). We just describe the image
of the translation and then rely on previous results [20]. The image of the translation is
simply-typed call-by-value λ-calculus extended with the constants of Figure 18.

The expression thread (λx.u) spawns a new process binding its future to the vari-
able x in u and also returning this future. A future can be thought of as placeholder for
a value that is set to contain a real value once that value becomes known. Futures are
central to λ(fut), but not to our translation.

The other constants are used for manipulating asynchronous channels, which can
be used for implementing mailboxes. The constants newChannel, put and get are used
for creating a channel, writing to a channel, and reading from a channel. They are not
built in to λ(fut), but are easily implemented in terms of λ(fut)-primitives, when λ(fut)
is extended with product types. The type of channels is Chan(A)2.

We write Γ `fut u : A for the λ(fut) typing judgement u has type A in context Γ .
The translation on terms and types is given in Figure 19. At the top-level a fresh channel
corresponding to the mailbox of the main process is introduced. Thereafter, the transla-
tion on terms is annotated with the current channel. Unit and variables are just mapped
to themselves. The current mailbox is threaded through functions and applications. The
spawn, send and receive constructs are mapped to thread, put and get, and self is sim-
ply mapped to the channel that corresponds to the current mailbox. The type translation

2 In fact Chan(A) is just the type (A → unit) × (unit → A) (i.e. a pair of put and get
functions), but that is not relevant to our presentation.

maps unit to unit, process types to channel types, and function types to function types
with an extra channel argument.

It is straightforward to prove by induction on typing derivations that the transforma-
tion respects typing judgements.

Proposition 2. The transformation [[·]] respects typing judgements.

Γ ;C ` u : A iff [[Γ]] `fut let ch[[C]] be newChannel () in [[u]]ch : A

By Proposition 2 and standard results for λ(fut) [20], we can be sure that programs that
are well-typed in our message-passing calculus “do not go wrong”.

6 Issues

Links is still at an early stage of development. There are a number of shortcomings in
the current design, which we plan to address. We mention some of them here.

Form abstractions. A flaw in the design of forms is that Links does not support ab-
straction over form components. As described in section 2.1, form interaction in Links
is specified using the attributes l:name, which binds the value of a form field to a
Links variable, and l:onsubmit, which contains Links code to be executed when a
form is submitted. Variables bound by l:name are in scope within the l:onsubmit
attribute of the lexically enclosing form. This design has several shortcomings. Firstly,
it is not possible to abstract over input elements, since all input elements must be lex-
ically contained within the form to which they belong. Secondly, it is not possible to
vary the number of input elements within a form, since each input element is associated
with a Links variable, and the number of variables is fixed at compile time. Thirdly,
form components are not composable: it is not possible to compose input elements to
create new form components which have the same interface as the language-supplied
primitives, since l:name is only attachable to input XML literals.

To illustrate these problems, say we wish to construct a date component which we
will use to allow the user to enter a number of dates into a form.

var date =
<#>
month: <input l:name="month"/>
day: <input l:name="day"/>
</#>

We would then like to plug instances of date into a form created elsewhere in the
program:

<form l:onsubmit="{e}">
Arrival: {date}
Departure: {date}

</form>

Γ, x : A; C ` x : A Γ ; C ` () : 1

Γ, x : A; C ` u : B

Γ ; D ` λx.u : A →C B

Γ ; C ` s : A →C B Γ ; C ` t : A

Γ ; C ` st : B

Γ ; C ` t : 1

Γ ; D ` spawn t : P (C) Γ ; C ` self : P (C)

Γ ; C ` s : P (D) Γ ; C ` t : D

Γ ; C ` send s t : 1 Γ ; C ` receive : C

Fig. 17. Statically typed message passing

thread : (A → A)→ A

newChannel : unit → Chan(A)

put : Chan(A)→ A → unit

get : Chan(A)→ unit → A

Fig. 18. Constants for the λ(fut) translation

[[u]] = let ch be newChannel () in [[u]]ch

[[()]]ch = ()

[[x]]ch = x

[[λx.u]]ch = λx.λch′.[[u]]ch′

[[st]]ch = [[s]]ch [[t]]ch ch

[[spawn u]]ch = let ch′ be newChannel () in
let be thread (λ .[[u]]ch′

) in ch′

[[send s t]]ch = put [[s]]ch [[t]]ch

[[receive]]ch = get ch

[[self]]ch = ch

[[1]] = 1 [[P (A)]] = Chan([[A]]) [[A →C B]] = [[A]] → [[P (C)]] → [[B]]

Fig. 19. Translation into λ(fut)

Unfortunately, Links provides no way to refer within the l:onsubmit attribute to the
values entered into the date fields, since the input elements are not lexically enclosed
within the form. The only way to write the program is to textually include the date
code within the form, then refer to the individual input elements of each month and day
within e. This violates abstraction in two ways: the component must be defined (twice!)
at the point of use, and the individual elements of the component cannot be concealed
from the client.

If we try to construct a form with a number of fields determined at runtime then we
run into further difficulties:

fun (n) {
<form l:onsubmit="{e}">{
for (var i <- range(n))
Field {i}: <input l:name="x"/>

}</form>
}

This code is also problematic: there is no way to refer to the different input fields
generated in the loop, since all have the same name! Such constructs are consequently
disallowed, and Links provides no way to construct forms with dynamically-varying
numbers of fields.

The l:name mechanism provides a limited (but clean) way to refer to DOM nodes
that are <input> elements. A related problem is that there is currently no other way
of statically referring to a DOM node, which means we have to resort to calling the
function getNodeById as illustrated in the draggable lists example.

Other systems also suffer from these problems to a greater or lesser degree. In PLT
Scheme [15], composing new forms from old or making forms with a varying number
of fields is possible, but not straightforward. In WASH [31] and iData [23], building
forms that return new types requires declaring instances for those types in particular
type classes, and in WASH a special type constructor needs to be used for forms with a
varying number of fields. It was surprising for us to realize that composability of forms
has received relatively little attention.

We are currently working on a design for light-weight modular form components,
which uses a uniform framework to support form abstraction, varying numbers of form
fields, and a mechanism that allows DOM nodes to be statically bound.

Synchronous messages. As far as we are aware, our mailbox typing scheme for Links
is novel, though the translation into λ(fut) shows that it can be simulated using typed
concurrent languages with support for typed channels.

Links message passing is asynchronous, but often one wants synchronous message
passing, where one sends a message and waits for a result. An example where syn-
chronous message passing is needed is the extension of the draggable lists example to
support reading the content of draggable lists.3

Although Links does not directly support synchronous message passing, it can be
simulated in the same way as in Erlang. In order to send a synchronous message from
process P to process Q the following sequence of events must occur.

3 See http://groups.inf.ed.ac.uk/links/examples/.

– P sends a message (M,P) to Q
– P blocks waiting for a reply Reply(N)
– on receiving the message (M,P) the process Q sends a reply message Reply(N)

to P
– P receives the reply message Reply(N)

However, Erlang is untyped; in Links, the simulation of synchronous messages has the
unfortunate side-effect of polluting the type of process P ’s mailbox, to include a dif-
ferent constructor for each distinct type of reply message associated with synchronous
messages sent by P .

Type pollution of this kind makes it hard to structure programs cleanly. We are
considering moving to a different model of concurrency that makes it easier to support
typed synchronous message passing, such as the Join calculus [10], or even removing
explicit concurrency from the language altogether and replacing it with something like
functional reactive programming [33].

Database abstraction. As we showed in Section 4, we can guarantee to compile a useful
fragment of Links into SQL. However, this fragment still lacks many important features.
We do not yet deal with aggregate functions such as count, sum, and average, we
only support order by attached to a single loop iterator (rather than a nest of loop
iterators). One can express the equivalent of a group by construct as a nested loop,
but we do not yet translate code into group by when appropriate, nor yet support any
other form of nested queries.

We also do not yet provide adequate support for abstracting over a query. For in-
stance, suppose we try to abstract over the condition in the dictionary suggest example.
We can amend the completions function to take a condition encoded as a function
from unit to bool in place of the prefix.

fun completions(cond) server {
if (s == "") [] else {
take(10, for (var def <-- defsTable)

where (cond) orderby (def.word)
[def])

}
}

Only once the condition is known is it possible to compile this to efficient SQL. The
current compiler produces spectacularly inefficient SQL, which returns the entire dic-
tionary, leaving the Links interpreter to then filter according to the condition and then
take the first 10 elements of the filtered list. To produce adequately efficient code, it is
necessary to inline calls to completions with the given predicate. But our compiler
does not yet perform inlining, and in general inlining can be difficult in the presence of
separate compilation.

Some of the problems outlined above are easy. For instance, we should be able to
support aggregates in the same style that we support take and drop; and it is straight-
forward to extend our techniques to support orderby on nested loops. However, other
problems are more challenging; in particular, it is not immediately clear how to extend
the fragment described in Section 4 to support abstraction over predicates in a useful
way.

Microsoft’s Linq addresses all these issues, but does so by (a) requiring the user to
write code that closely resembles SQL and (b) a subtle use of the type system to dis-
tinguish between a procedure that returns a value and a procedure that returns code that
generates that value. It remains an open research problem to determine to what extent
one can support efficient compilation into SQL without introducing separate syntax and
semantics for queries as is done in Linq.

7 Conclusion

We have demonstrated that it is possible to design a single language in which one can
program all three tiers of a web application. This eliminates the usual impedance mis-
match and other problems connected with writing an application distributed across mul-
tiple languages and computers. We have shown that we can support Ajax-style interac-
tion in the client, programming applications such as dictionary suggest and draggable
lists. Our programming language compiles to JavaScript to run in the client, and SQL
to run on the database.

Ultimately, we would like to grow a user community for Links. This depends on a
number of factors, many of which are not well understood. One important factor seems
to be the availability of good libraries. Good interfaces to other systems may help to
rapidly develop useful functionality. A vexing question here is how to access facilities
of languages that take a mostly imperative view of the world without vitiating the mostly
functional approach taken by Links.

To make Links truly successful will require bringing together researchers and de-
velopers from many localities, many perspectives, and many communities. We would
like to join our efforts with those of others — let us know if you are interested!

References

1. D. L. Atkins, T. Ball, G. Bruns and K. C. Cox. Mawl: A domain-specific language for form-
based services. Software Engineering, 25(3):334 346, 1999.

2. J. Armstrong. Concurrency oriented programming in Erlang. Invited talk, FFG 2003.
3. V. Balat. Ocsigen: typing web interaction with objective Caml Proceedings of the 2006 work-

shop on ML, Portland, Oregon, September 2006.
4. N. Benton, L. Cardelli, C. Fournet. Modern concurrency abstractions for C]. TOPLAS, 26(5),

2004.
5. N. Benton, A. Kennedy, and C. Russo. Adventures in interoperability: the SML.NET expe-

rience. PPDP, 2004.
6. G. Bierman, E. Meijer, W. Schulte. Programming with rectangles, triangles, and circles. XML

Conference, 2003.
7. P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles of programming with complex

objects and collection types. TCS, 149(1), 1995.
8. R. Burstall, D. MacQueen, and D. Sannella. Hope: An experimental applicative language.

Lisp Conference, 1980.
9. S. El-Ansary, D. Grolaux, P. Van Roy, M. Rafea. Overcoming the multiplicity of languages

and technologies for web-based development. Mozart/Oz Conference, LNCS 3389, 2005.
10. C. Fournet, G. Gonthier. The Join Calculus: a language for distributed mobile programming.

Applied Semantics, LNCS 2395, 2002.

11. J. Garret. Ajax: a new approach to web applications. 2005.
12. P. Graham. “Method for client-server communications through a minimal interface.” United

States Patent no. 6,205,469. March 20, 2001.
13. P. Graham. Beating the averages. 2001.
14. P. Graunke, R. B. Findler, S. Krishnamurthi, M. Felleisen. Automatically restructuring pro-

grams for the web. ASE, 2001.
15. P. Graunke, S. Krishnamurthi, S. van der Hoeven, M. Felleisen. Programming the web with

high-level programming languages. ESOP, 2001.
16. V. Gapeyev, M. Levin, B. Pierce, A. Schmitt. The Xtatic experience. PLAN-X, 2005.
17. labs.google.com/suggest
18. Microsoft Corporation. DLinq: .NET Language Integrated Query for Relational Data

September 2005
19. A. Mller, M. Schwartzbach. The design space of type checkers for XML transformation

languages. ICDT, LNCS 3363, 2005.
20. J. Niehren, J. Schwinghammer, G. Smolka. A Concurrent Lambda Calculus with Futures.

TCS, 364(3), 2006.
21. G. Narra. ObjectGraph Dictionary.

http://www.objectgraph.com/dictionary/how.html
22. M. Odersky et al. An overview of the Scala programming language. Technical report, EPFL

Lausanne, 2004.
23. R. Plasmeijer and P. Achten. iData For The World Wide Web: Programming Interconnected

Web Forms. FLOPS, 2006.
24. F. Pottier and D. Rémy. The essence of ML type inference. In B. Pierce, editor, Advanced

Topics in Types and Programming Languages, chapter 10, pages 389–489. MIT Press, 2005.
25. C. Queinnec. Continuations to program web servers. ICFP, 2000.
26. Christian Queinnec Inverting back the inversion of control or, continuations versus page-

centric programming, SIGPLAN Not., 2003
27. J. Reynolds. Definitional interpreters for higher-order programming languages. ACM ’72:

Proceedings of the ACM annual conference, 1972.
28. Ruby on Rails.

http://www.rubyonrails.org/
29. M. Serrano, E. Gallesio, and F. Loitsch. HOP, a language for programming the Web 2.0.

Proceedings of the First Dynamic Languages Symposium, Portland, Oregon, October 2006.
30. D. Syme. F] web page.

research.microsoft.com/projects/ilx/fsharp.aspx
31. P. Thiemann. WASH/CGI: server-side web scripting with sessions and typed, compositional

forms. PADL, 2002.
32. P. Van Roy. Convergence in language design: a case of lightning striking four times in the

same place. FLOPS, 2006.
33. Z. Wan and P. Hudak. Functional reactive programming from first principles. In PLDI ’00:

Proceedings of the ACM SIGPLAN 2000 conference on Programming language design and
implementation, Vancouver, British Columbia, Canada, 2000.

34. B. Wiederman and W. Cook. Extracting queries by static analysis of transparent persistence.
POPL, 2007.

35. L. Wong. Kleisli, a functional query system. JFP, 10(1), 2000.
36. XML Query and XSL Working Groups. XQuery 1.0: An XML Query Language, W3C Work-

ing Draft, 2005.

