Skip to main content

Adaptive Mechanisms for Classification Problems with Drifting Data

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4693))

Abstract

Most work on supervised learning is undertaken on static problems. However, in many real world classification problems, the environment in which the classifiers operate is dynamic i.e. the descriptions of classes change with time. In this paper, the process of generating drifting data is introduced in order to assess two adaptive approaches that deal with dynamically changing data. These approaches are: retraining on evolving data set and incremental learning. The empirical evaluation has shown that both these approaches improve the performance compared to the non-adaptive mode though a number of outstanding research issues remain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kelly, M.G., Hand, D.J., Adams, N.M.: The impact of changing populations on classifier performance. In: Proc of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 367–371 (1999)

    Google Scholar 

  2. Gabrys, B.: Learning hybrid neuro-fuzzy classifier models from data: to combine or not to combine? Fuzzy Sets and Systems 147(1), 39–56 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Machine Learning 23(1), 69–101 (1996)

    Google Scholar 

  4. Salganicoff, M.: Density-adaptive learning and forgetting. In: Proceedings of the Tenth International Conference on Machine Learning, pp. 276–283 (1993)

    Google Scholar 

  5. Abraham, W.C., Robins, A.: Memory retention-the synaptic stability versus plasticity dilemma. Trends in Neurosciences 28(2), 73–78 (2005)

    Article  Google Scholar 

  6. French, R.M.: Pseudo-recurrent connectionist networks: An approach to the Sensitivity-Stability dilemma. Connection Science 9(4), 353–380 (1997)

    Article  Google Scholar 

  7. Lim, C.P., Harrison, R.F.: Online pattern classification with multiple neural network systems: an experimental study. Systems, Man and Cybernetics, Part C, IEEE Transactions 33(2), 235–247 (2003)

    Google Scholar 

  8. Bouchachia, A., Mittermeir, R.: Towards incremental fuzzy classifiers. Soft Computing 11(2), 193–207 (2007)

    Article  Google Scholar 

  9. Bouchachia, A., Gabrys, B., Sahel, Z.: Overview of some incremental learning algorithms (2007)

    Google Scholar 

  10. Hettich, S., Blake, C., Merz, C.: UCI repository of machine learning databases (1998), www.ics.uci.edu/~mlearn/MLRepository.html

  11. Duin, R.P.W.: PRTools 3 Manual, provided with PRTools 3.1.6 Toolkit (2000)

    Google Scholar 

  12. Grossberg, S.: Nonlinear neural networks: principles, mechanism, and architectures. Neural Networks 1, 17–61 (1988)

    Article  Google Scholar 

  13. Carpenter, G., Grossberg, S., Rosen, D.: Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks 4(6), 759–771 (1991)

    Article  Google Scholar 

  14. Salzberg, S.: A nearest hyperrectangle learning method. Machine learning 6, 277–309 (1991)

    Google Scholar 

  15. Gabrys, B., Bargiela, A.: General fuzzy min-max neural network for clustering and classification. IEEE Transactions on Neural Networks 11(3), 769–783 (2000)

    Article  Google Scholar 

  16. Fritzke, B.: A growing neural gas network learns topologies. In: Advances in neural information processing systems, pp. 625–632 (1995)

    Google Scholar 

  17. Bouchachia, A.: Incremental learning via function decomposition. In: Proceedings of the 5th ICMLA, pp. 63–68. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sahel, Z., Bouchachia, A., Gabrys, B., Rogers, P. (2007). Adaptive Mechanisms for Classification Problems with Drifting Data. In: Apolloni, B., Howlett, R.J., Jain, L. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2007. Lecture Notes in Computer Science(), vol 4693. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74827-4_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74827-4_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74826-7

  • Online ISBN: 978-3-540-74827-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics