Abstract
We propose a modified SVM algorithm for the classification of data augmented with explicit quality quantification for each example in the training set. As the extension to nonlinear decision functions through the use of kernels brings to a non-convex optimization problem, we develop an approximate solution. Finally, the proposed approach is applied to a set of benchmarks and contrasted with analogous methodologies in the literature.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Apolloni, B., Malchiodi, D.: Embedding sample points relevance in svm linear classification. In: Torra, V., Narukawa, Y., Valls, A., Domingo-Ferrer, J. (eds.) MDAI 2006. LNCS (LNAI), vol. 3885, Springer, Heidelberg (2006)
Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 121–167 (1995)
Fletcher, R.: Practical Methods of Optimisations, 2nd edn. John Wiley & Sons, Chichester (1987)
Malchiodi, D.: Embedding sample point uncertainty measures in learning algorithms. Nonlinear Analysis: Hybrid Systems (in press) (doi:10.1016/j.nahs.2006.12.004)
Schölkopf, B., Smola, A.J.: Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge, MA (2002)
Theodoridis, S., Koutroumbas, K.: Pattern recognition. Elsevier/Academic Press, Amsterdam, Boston (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Apolloni, B., Malchiodi, D., Natali, L. (2007). A Modified SVM Classification Algorithm for Data of Variable Quality. In: Apolloni, B., Howlett, R.J., Jain, L. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2007. Lecture Notes in Computer Science(), vol 4694. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74829-8_17
Download citation
DOI: https://doi.org/10.1007/978-3-540-74829-8_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74828-1
Online ISBN: 978-3-540-74829-8
eBook Packages: Computer ScienceComputer Science (R0)