Skip to main content

Neural Network Prediction of the Roll Motion of a Ship for Intelligent Course Control

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2007)

Abstract

For conventional ships, the mono-variable autopilot controls the heading of the ship in the presence of disturbances. During the heading control, there are many moments of time when the rudder command to control the yaw angle has a negative influence on roll oscillations. The prediction of the wave influence on the roll motion can be used to implement an intelligent heading control system, which is added to the mono-variable autopilot, generating only rudder commands with damping or non-increasing effects over roll movements. In this paper, aspects of roll angle and roll rate prediction using feed-forward neural networks are discussed. A neural network predictor of the roll rate, based on measured values of the roll angle, is proposed. The neural architecture is analyzed using different training data sets and noise conditions. The predictor has on-line adaptive characteristics and is working well even if both training and testing sets are affected by measurement noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fossen, T.I.: Guidance and Control of Ocean Vehicles. John Wiley and Sons, New York (1994)

    Google Scholar 

  2. Nicolau, V., Ceangă, E.: Wave Spectrum Correction with the Ship’s Speed and the Incidence Angle. In: IFAC Conf. CAMS, Glasgow, UK, pp. 331–336 (2001)

    Google Scholar 

  3. Blanke, M., Christensen, A.C.: Rudder-Roll Damping Autopilot Robustness to Sway-Yaw-Roll Couplings. In: Proc. of the 10th Int. SCSS’93, vol. A, Ottawa, Canada, pp. 93–119 (1993)

    Google Scholar 

  4. Hearns, G., Blanke, M.: Quantitative Analysis and Design of a Rudder Roll Damping Controller. In: Proc. of IFAC Conference CAMS’98, Fukuoka, Japan (1998)

    Google Scholar 

  5. Van Amerongen, J., van der Klugt, P.G.M., Van Nauta Lempke, H.: Rudder Roll Stabilization for Ships. Automatica AUT-26(4), 679–690 (1990)

    Article  Google Scholar 

  6. Tzeng, C.Y., Wu, C.Y., Chu, Y.L.: A Sensitivity Function Approach to the Design of Rudder Roll Stabilization Controller. J. Marine Science and Tech. 9(2), 100–112 (2001)

    Google Scholar 

  7. Nicolau, V., Miholcă, C., Puşcaşu, G. Judele, S.: Rudder–Roll Damping Effect by Control of the Rudder Command Time Moments. In: IFAC Conference on Control Applications in Marine Systems (CAMS 2004) Ancona, Italy pp. 167–172 (2004)

    Google Scholar 

  8. Nicolau, V., Ceangă, E.: Fuzzy Rudder–Roll Damping System Based on Analysis of the Autopilot Commands. IFAC Conf. CAMS 2004 Ancona, Italy pp. 285–290 (2004)

    Google Scholar 

  9. Yang, S.-S., Tseng, C.-S.: An orthogonal neural network for function approximation. IEEE Trans. Syst. Man. Cybern. B 26, 779–783 (1996)

    Article  Google Scholar 

  10. Leung, H., Haykin, S.: Rational function neural network. Neural Computing 5, 928–938 (1993)

    Article  Google Scholar 

  11. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Networks 4, 251–257 (1991)

    Article  Google Scholar 

  12. Leshno, M., Lin, V.Y., Pinkus, A., Schocken, S.: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks 6, 861–867 (1993)

    Article  Google Scholar 

  13. Leung, H., Lo, T., Wang, S.: Prediction of noisy chaotic time series using an optimal radial basis function neural network. IEEE Trans. on Neural Networks 12, 1163–1172 (2001)

    Article  Google Scholar 

  14. Medeiros, M.C., Veiga, A.: A hybrid linear-neural model for time series forecasting. IEEE Trans. on Neural Networks 11(6), 1402–1412 (2000)

    Article  Google Scholar 

  15. Ding, A.A.: Neural network prediction with noisy predictors. IEEE Trans. on Neural Networks 10(5), 1196–1203 (1999)

    Article  Google Scholar 

  16. Reyhanoglu, M.: Control and stabilization of an underactuated surface vessel. In: Proc. of 35th Conf. Decision Control, Kobe, Japan, pp. 2371–2376 (1996)

    Google Scholar 

  17. Van der Klugt, P.G.M.: Rudder Roll Stabilization. Ph.D.Thesis. Delft University of Technology, The Netherlands (1987)

    Google Scholar 

  18. Nicolau, V.: The Influence of the Ship’s Steering Machine over Yaw and Roll Motions, Annals of Dunarea de Jos University of Galati, Fascicle III, Galati, pp. 76–81 (2003) ISSN 1221-454X

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bruno Apolloni Robert J. Howlett Lakhmi Jain

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nicolau, V., Palade, V., Aiordachioaie, D., Miholca, C. (2007). Neural Network Prediction of the Roll Motion of a Ship for Intelligent Course Control. In: Apolloni, B., Howlett, R.J., Jain, L. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2007. Lecture Notes in Computer Science(), vol 4694. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74829-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74829-8_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74828-1

  • Online ISBN: 978-3-540-74829-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics