Abstract
A key problem in time series prediction using autoregressive models is to fix the model order, namely the number of past samples required to model the time series adequately. The estimation of the model order using cross-validation is a long process. In this paper we explore faster alternative to cross-validation, based on nonlinear dynamics methods, namely Grassberger-Procaccia, Kégl and False Nearest Neighbors algorithms. Once the model order is obtained, it is used to carry out the prediction, performed by a SVM. Experiments on three real data time series show that nonlinear dynamics methods have performances very close to the cross-validation ones.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aguirre, L.A., Rodrigues, G.G., Mendes, E.M.: Nonlinear identification and cluster analysis of chaotic attractors from a real implementation of Chua’s circuit. International Journal of Bifurcation and Chaos 6(7), 1411–1423 (1997)
Arbabanel, H.D.I.: Analysis of Observed Chaotic Data. Springer, Heidelberg (1996)
Chua, L.O., Komuro, M., Matsumoto, T.: The double scroll. IEEE Transactions on Circuits and Systems 32(8), 797–818 (1985)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley and Sons, New York (2000)
Eckmann, J.P., Ruelle, D.: Ergodic Theory of Chaos and Strange Attractors. Review of Modern Physics 57, 617–659 (1985)
Grassberger, P., Procaccia, I.: Measuring the Strangeness of Strange Attractors. Physica D9, 189–208 (1983)
Hübner, U., Weiss, C.O., Abraham, N.B., Tang, D.: Lorenz-Like Chaos in NH3-FIR Lasers. In: Time Series Prediction. Forecasting the Future and Understanding the Past, pp. 73–104. Addison-Wesley, Reading (1994)
Joachim, T.: Making large-Scale SVM Learning Practical. Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge (1999)
Kantz, H., Schreiber, T.: Nonlinear time series analysis. Cambridge University Press, Cambridge (1997)
Kennel, M.B., Brown, R., Arbabanel, H.D.I.: Determining Embedding Dimension for Phase-Space Reconstruction using a Geometrical Construction. Physical Review A 45(6), 3403–3411 (1992)
Kégl, B.: Intrinsic Dimension Estimation Using Packing Numbers. Advances in Neural Information Processing 15. MIT Press, Cambridge (2003)
Mañé, R.: On the dimension of compact invariant sets of certain nonlinear maps. In: Dynamical Systems and Turbolence, Warwick 1980. Lecture Notes in Mathematics, vol. 898, pp. 230–242. Springer-Verlag, Heidelberg (1981)
Müller, K-R., Rätsch, G., Kohlmorgen, J., Smola, A., Schölkopf, B., Vapnik, V.: Time Series Prediction using support vector regression and neural network. In: Higuchi, T., Takizawa, Y. (eds.) Proceedings of Second International Symposium on Frontiers of Time Series Modelling: Nonparametric Approach to Knowledge Discovery, Institute of mathematical statistic publication (2000)
Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993)
Packard, N., Crutchfield, J., Farmer, J., Shaw, R.: Geometry from a time series. Physical Review Letters 45(1), 712–716 (1980)
Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)
Stone, M.: Cross-validatory choice and assessment of statistical prediction. Journal of the Royal Statistical Society 36(1), 111–147 (1974)
Takens, F.: Detecting strange attractor in turbolence. In: Dynamical Systems and Turbolence, Warwick 1980. Lecture Notes in Mathematics, vol. 898, pp. 366–381. Springer-Verlag, Heidelberg (1981)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)
Tong, H.: Nonlinear Time Series. Oxford University Press, Oxford (1990)
Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, New York (1998)
Wijngaard, J.B., Klein Tank, A.M.G., Konnen, G.P.: Homogeneity of 20th century European daily temperature and precipitation series. International Journal of Climatology 23, 679–692 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Camastra, F., Filippone, M. (2007). SVM-Based Time Series Prediction with Nonlinear Dynamics Methods. In: Apolloni, B., Howlett, R.J., Jain, L. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2007. Lecture Notes in Computer Science(), vol 4694. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74829-8_37
Download citation
DOI: https://doi.org/10.1007/978-3-540-74829-8_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74828-1
Online ISBN: 978-3-540-74829-8
eBook Packages: Computer ScienceComputer Science (R0)