Skip to main content

The 3-Steiner Root Problem

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4769))

Included in the following conference series:

Abstract

For a graph G and a positive integer k, the k-power of G is the graph G k with V(G) as its vertex set and {(u,v)| u, v ∈ V(G),  d G (u, v) ≤ k} as its edge set where d G (u,v) is the distance between u and v in graph G. The k-Steiner root problem on a graph G asks for a tree T with V(G) ⊆ V(T) and G is the subgraph of T k induced by V(G). If such a tree T exists, we call it a k-Steiner root of G. This paper gives a linear time algorithm for the 3-Steiner root problem. Consider an unrooted tree T with leaves one-to-one labeled by the elements of a set V. The k-leaf power of T is a graph, denoted \(T_{L}^{k}\), with \(T_{L}^{k} = (V, E)\), where E = {(u,v) |u, v ∈ V   and   d T (u,v) ≤ k}. We call T a k-leaf root of \(T_{L}^{k}\). The k-leaf power recognition problem is to decide whether a graph has such a k-leaf root. The complexity of this problem is still open for k ≥ 5 [6]. It can be solved in polynomial time if the (k − 2)-Steiner root problem can be solved in polynomial time [6]. Our result implies that the k-leaf power recognition problem can be solved in linear time for k = 5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandstädt, A., Van Bang Le: Structure and linear time recognition of 3-leaf powers. Information Processing Letters 98, 133–138 (2006)

    Google Scholar 

  2. Chang, M.-S., Ko, M.-T., Lu, H.-I.: Linear time algorithms for tree root problems. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 411–422. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Sunil Chandran, L.: A linear time algorithm for enumerating all the maximum and minimal separators of a chordal graph. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, pp. 308–317. Springer, Heidelberg (2001)

    Google Scholar 

  4. Chen, Z.-Z., Jiang, T., Lin, G.-H.: Computing phylogenetic roots with bounded degrees and errors. SIAM J. Comput. 32, 864–879 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, Z.-Z., Tsukiji, T.: Computing bounded-degree phylogenetic roots of disconnected graphs. Journal of Algorithms 59, 125–148 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dom, M., Guo, J., Hüffner, F., Niedermeier, R.: Extending the tractability border for closest leaf powers. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 397–408. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Dom, M., Guo, J., Hüffner, F., Niedermeier, R.: Error compensation in leaf power problems. Algorithmica 44, 363–381 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Harary, F.: Graph Theory. Addison-Wesley Publishing Company, Reading (1969)

    Google Scholar 

  9. Ho, C.-W., Lee, R.C.T.: Counting clique trees and computing perfect elimination schemes in parallel. Infom. Process. Lett. 31, 61–68 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kennedy, W., Lin, G.: 5th Phylogenetic Root Construction for Strictly Chordal Graphs. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 738–747. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Kennedy, W., Lin, G., Yan, G.: Strictly chordal graphs are leaf powers. Journal of Discrete Algorithms (to appear)

    Google Scholar 

  12. Kong, H., Yan, G.Y.: Algorithm for phylogenetic 5-root problem. Optimization Methods and Software (submitted for publication)

    Google Scholar 

  13. Lin, G.-H., Kearney, P.E., Jiang, T.: Phylogenetic k-root and Steiner k-root. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 539–551. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Kearney, P.E., Corneil, D.G.: Tree powers. J. of Algorithms 29, 111–131 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nishimura, N., Ragde, P., Thilikos, D.M.: On graph powers for leaf-labeled trees. J. of Algorithms 42, 69–108 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andreas Brandstädt Dieter Kratsch Haiko Müller

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chang, MS., Ko, MT. (2007). The 3-Steiner Root Problem. In: Brandstädt, A., Kratsch, D., Müller, H. (eds) Graph-Theoretic Concepts in Computer Science. WG 2007. Lecture Notes in Computer Science, vol 4769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74839-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74839-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74838-0

  • Online ISBN: 978-3-540-74839-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics