Skip to main content

Recognizing Affective Dimensions from Body Posture

  • Conference paper
Affective Computing and Intelligent Interaction (ACII 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4738))

Abstract

The recognition of affective human communication may be used to provide developers with a rich source of information for creating systems that are capable of interacting well with humans. Posture has been acknowledged as an important modality of affective communication in many fields. Behavioral studies have shown that posture can communicate discrete emotion categories as well as affective dimensions. In the affective computing field, while models for the automatic recognition of discrete emotion categories from posture have been proposed, to our knowledge, there are no models for the automatic recognition of affective dimensions from static posture. As a continuation of our previous study, the two main goals of this study are: i) to build automatic recognition models to discriminate between levels of affective dimensions based on low-level postural features; and ii) to investigate both the discriminative power and the limitations of the postural features proposed. The models were built on the basis of human observers’ ratings of posture according to affective dimensions directly (instead of emotion category) in conjunction with our posture features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Argyle, M.: Bodily Communication. Methuen & Co. Ltd., London (1988)

    Google Scholar 

  2. Bianchi-Berthouze, N., Kleinsmith, A.: A categorical approach to affective gesture recognition. Connection Science 15, 259–269 (2003)

    Article  Google Scholar 

  3. Camurri, A., Hashimoto, S., Suzuki, K., Trocca, R.: Kansei analysis of dance performance. In: IEEE Int’l Conf. on Systems, Man and Cybernetics, pp. 327–332 (1999)

    Google Scholar 

  4. Camurri, A., Volpe, G., De Poli, G., Leman, M.: Communicating Expressiveness and Affect in Multimodal Interactive Systems. IEEE Multimedia 12, 43–53 (2005)

    Article  Google Scholar 

  5. Coulson, M.: Attributing emotion to static body postures: recognition accuracy, confusions, and viewpoint dependence. Jour. of Nonv. Behav. 28, 117–139 (2004)

    Article  Google Scholar 

  6. Davitz, J.: Auditory correlates of vocal expression of emotional feeling. In: Davitz, J. (ed.) The Communication of emotional Meaning, pp. 101–112. McGraw-Hill, New York (1964)

    Google Scholar 

  7. de Gelder, B., Snyder, J., Greve, D., Gerard, G., Hadjikhani, N.: Fear fosters flight: A mechanism for fear contagion when perceiving emotion expressed by a whole body. Proc. of the National Academy of Science 101(47), 16701–16706 (2003)

    Article  Google Scholar 

  8. de Silva, P.R., Bianchi-Berthouze, N.: Modeling human affective postures: An information theoretic characterization of posture features. Journal of Computer Animation and Virtual Worlds 15, 269–276 (2004)

    Article  Google Scholar 

  9. de Silva, P., Kleinsmith, A., Bianchi-Berthouze, N.: Towards unsupervised detection of affective body posture nuances. In: Tao, J., Tan, T., Picard, R.W. (eds.) ACII 2005. LNCS, vol. 3784, pp. 32–39. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Ekman, P., Friesen, W.: Head and body cues in the judgment of emotion. A reformulation, Perceptual and Motor Skills 24, 711–724 (1967)

    Google Scholar 

  11. Harrigan, J., Rosenthal, R.: Physicians head and body positions as determinants of perceived rapport. Journal of of Applied Social Psychology 13(6), 496–509 (1983)

    Article  Google Scholar 

  12. Hastie, T., Tibshirabi, R.: Discriminant analysis by Gaussian mixture. Journal of the Royal Statistical Society B:58, 155–176 (1996)

    Google Scholar 

  13. James, W.T.: A study of the expression of bodily posture. Journal of General Psychology 7, 405–437 (1932)

    Article  Google Scholar 

  14. Kamisato, S., Odo, S., Ishikawa, Y., Hoshino, K.: Extraction of motion characteristics corresponding to sensitivity information using dance movement. Journal of Advanced Computational Intelligence and Intelligent Informatics 8(2), 167–178 (2004)

    Google Scholar 

  15. Kapoor, A., Picard, R., Ivanov, Y.: Probabilistic combination of multiple modalities to detect interest. Proc. of the 17th International Conference on Pattern Recognition 3, 969–972 (2004)

    Article  Google Scholar 

  16. Kleinsmith, A., Fushimi, T., Bianchi-Berthouze, N.: An incremental and interactive affective posture recognition system. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, Springer, Heidelberg (2005)

    Google Scholar 

  17. Kleinsmith, A., de Silva, P., Bianchi-Berthouze, N.: Cross-cultural differences in recognizing affect from body posture. Interacting with Computers 18, 1371–1389 (2006)

    Article  Google Scholar 

  18. Kleinsmith, A., de Silva, P., Bianchi-Berthouze, N.: Grounding affective dimensions into posture features. In: Proceedings of the First International Conference on Affective Computing and Intelligent Interaction, pp. 263–270. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Lachenbruch, P.A.: Discriminant Analysis, NY, Hafner (1975)

    Google Scholar 

  20. Mehrabian, A., Friar, J.: Encoding of attitude by a seated communicator via posture and position cues. Journal of Consulting and Clinical Psychology 33, 330–336 (1969)

    Article  Google Scholar 

  21. Mehrabian, A.: Inference of attitude from the posture, orientation, and distance of a communicator. Journal of Consulting and Clinical Psychology 32, 296–308 (1968)

    Article  Google Scholar 

  22. Mehrabian, A., Russell, J. (eds.): An Approach to Environmental Psychology. MIT Press, Cambridge (1974)

    Google Scholar 

  23. Osgood, C., Suci, G., Tannenbaum, P.: The measurement of meaning. University of Illinois Press, Chicago (1957)

    Google Scholar 

  24. Woo, W., Park, J., Iwadate, Y.: Emotion analysis from dance performance using time-delay neural networks. Proc. of the JCIS-CVPRIP 2, 374–377 (2000)

    Google Scholar 

  25. Wundt, W.: Outlines of psychology. Wilhelm Englemann, Leipzig (1907)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ana C. R. Paiva Rui Prada Rosalind W. Picard

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kleinsmith, A., Bianchi-Berthouze, N. (2007). Recognizing Affective Dimensions from Body Posture. In: Paiva, A.C.R., Prada, R., Picard, R.W. (eds) Affective Computing and Intelligent Interaction. ACII 2007. Lecture Notes in Computer Science, vol 4738. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74889-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74889-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74888-5

  • Online ISBN: 978-3-540-74889-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics