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Abstract. Symbiosis, the collaboration of multiple organisimsm different
species, is common in nature. A related phenomesgmbiogenesis, the
creation of new species through the genetic integraof symbionts, is a
powerful alternative to crossover as a variatiorerafor in evolutionary
algorithms. It has inspired several previous modést use the repeated
composition of pre-adapted entities. In this paperintroduce a new algorithm
utilizing this concept of symbiosis which is simpiend has a more natural
interpretation when compared with previous algongh In addition it achieves
success on a broader class of modular problemsstirae prior methods.

1 Introduction

Collaboration between organisms of different tyjsesalled symbiosis [13], and such
relationships are common in nature, particularlyoagst prokaryotes [10]. When
symbiotic associations persist over evolutionamescales, the entities involved may
become reproductively inseparable and KonstantirM8rezhkovsky named this
symbiogenesis [8]. Symbiogenesis is thought to Haeen responsible for several
major evolutionary transitions [12], including ‘fpaps the most important and
dramatic event in the history of life [...] — the arigof eukaryotes’ [13, p51] when an
archaebacterium and a eubacterium in a symbiotatioaship were genetically
joined [11].

The genetic algorithm (GA) is one model of evolatand is useful as it allows us
to investigate and understand the process of natelection. It has distilled some key
elements of evolution, such as the ever-repeatiraggss of inherited variation
followed by differential selection. However, oneykaspect that is not captured by a
model like the GA is macroevolution: processes thatur above the level of the
species. Symbiosis and symbiogenesis are mechanisimas require a
macroevolutionary model to explore successfully.e Thariation offered by
symbiogenesis is qualitatively different from selxa@ssover: it offers the union of
two sets of pre-adapted genetic material. If théecpss is repeated, the complexity of
the resultant entity can be far greater than thidahe original entities involved. We
call this process compositional evolution [22], anddels that investigate this type of
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process may shed light on how modular encapsuldticifitates macroevolutionary
trends such as the major evolutionary transitions.

Compositional evolution is of interest algorithnmigaas well as biologically, and
this phenomenon has given rise to several algositiihat employ a symbiotic
mechanism. Some have been aimed both at a congnahtiiology audience (e.g.
[21]) and problem solving in evolutionary computati(e.g. [5][4]). In this paper we
consider a new model and investigate its utilitprpptimization problems.

A symbiotic approach is particularly suited to hiehically modular problems: the
solution space is searched with entities of indnepsomplexity and stability, initially
identifying optimal configurations for small subseif variables, but progressively
increasing the size of subsets by combining thé@ragbtconfigurations for different
variable subsets. However, we believe that emptp@ymbiotic variation has the
ability to exploit any modularity, hierarchicallyganized or not. We observe modular
structures in a wide range of biological [7], plogdi[18] and engineered systems [1].
In such systems individual parts may be solvedartial or full isolation from other
portions of the system [1][18]. In problems exHhimt this type of decomposability,
algorithms that exploit this knowledge should outpen algorithms that do not
exploit modular structures. The canonical examglaro algorithm which does not
exploit modularity is a simple hill climbing prosesvhich can only advance in the
search space with gradual steps of improvementreTaee a number of algorithms
that attempt to exploit modular structures, inchgdithe genetic algorithm (GA)
[20][14], cooperative coevolution [17], and estifoatof distribution algorithms such
as the Bayesian optimization algorithm [16]. Here address the type of algorithm
that is explicitly compositional as mentioned ahoVbere are also a number of test
problems in the literature that exhibit modular gedies, including concatenated
functions of unitation [3], and royal roads [15]Here we utilize functions with
hierarchical modularity [19], and parameterizalitectural modularity [14].

In the remainder of this section we review the Sipgénic Evolutionary
Adaptation Model (SEAM) [21], identify limitationand propose possible methods to
address certain limitations of this approach witikeasr computational algorithm.

SEAM is an early evolutionary algorithm inspired fgymbiogenesis [21]. It differs
from typical evolutionary algorithms (EA) in sevkraspects. These include the
symbiogenic variation operator, an ecosystem dfiestwhich are partially specified,
and coevolved ecosystem templates that are uséatitdate evaluation. The main
pool of genetic material represents an ecosystemaniy different entities, each
specifying only part of an overall solution. Théseno source of new genetic material
(i.e. no mutation), and the only variation operasathe symbiotic join of two entities.
The main loop of the algorithm operates as followa entities are picked at random,
and evaluated in a number of contexts to deternfinthe pair should make a
permanent symbiogenic alliance. A version of Padetminance (see [21]) is used to
make these decisions. If this is the case, the gwobionts are removed from the
ecosystem and replaced with the chimera. As tlisgss is repeated, the average size
of entities will increase until fully specified smions are discovered.

SEAM has several limitations: the Pareto dominanmechanism employed to
determine whether a join should be made is unnadgssomplicated. Assembling
contexts from other entities within the ecosystafthough arguably natural, is (we
will show) an unnecessary assumption. Finally, SERANerformance in other
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problem domains is severely brittle: the utility ®EAM has only been demonstrated
on a stylized hierarchical function, Hierarchidahhd-only-If (HIFF) [19].

Following [21] we develop a new symbiosis-inspidorithm where individuals
repeatedly test and make pairwise joins to comjaoger and larger entities, resulting
in problem solutions. As in prior work, we are alaterested in understanding what
symbiosis can offer us algorithmically, when congohmwith mutation and sexual
recombination. Symbiosis potentially offers comgiosal evolution which can,
where the problem domain allows, provide a fundaaibn different form of
adaptation from the gradualist framework by exjpigitdivide and conquer problem
decomposition [22]. The shuffled-HIFF test probldor, example, can be solved by
the composition provided by SEAM in time polynomial the problem size, but
neither a hill climbing process nor a GA using sExrossover can be guaranteed to
reach the optimum in less than exponential timg[§2]. Our new compositional
algorithm can also reliably solve shuffled-HIFF,tbalso extends the scope of
applicability to include a single-layered modulamlplem that is somewhat less
contrived than shuffled-HIFF. The single-layereddular problem is, however, also
beyond the competence of hill climbing and sexwuassover in the simple GA [14].
In addition to being more general, the new algamithas a much simpler biological
interpretation than SEAM, removing several markectmplicated components of
the algorithm, as we shall discuss. Thus we prowiddllustration of compositional
evolution that is shown to be capable of exploiting divide and conquer advantage
of composition by solving a problem with modularteirdependency [2]. The
mechanism has relatively straightforward biologieaklogues in the formation of
symbiotic associations, yet its adaptive capad@tyains algorithmically distinct from
that of the simple GA. The modularity exploited thjs mechanism, as shown in the
problem class we illustrate, is also a straightmavkind of modularity with a simple
intuitive structure. Together this indicates thia¢ toreadth and potential impact of
symbiosis and compositional mechanisms in natwystess could be much broader
than the results supported by prior work, and k&ing a step closer to developing
biologically relevant algorithms of hierarchical aaudive processes and the major
transitions in evolution. The new algorithm usesaastraction of symbiogenesis as
its variation operator, and decisions on when iwlke this mechanism to create a
permanent association between entities are bassdlecting symbiotic relationships
with maximal synergy (synergy is essentially a measof how much greater the
symbiont is over the sum of the individual effects)

2 TheReciprocal Synergy Symbiosis Algorithm

This section describes the new algorithm preseaedinvestigated in this paper. The
Reciprocal Synergy Symbiosis Algorithm (RSSA) uaagenerational loop consisting
of evaluation, selection and variation, in commoithwa regular EA. However,
significant differences exist in each of these etags well as the representation used
for a candidate. Psuedocode for the algorithmvisrgin Fig 1.

A population of candidates is used but they arendéd to represent distinct
entities in an ecosystem, rather than all competorgthe same niche. As such a
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candidate entity only specifies alleles for a stile$¢he problem loci. The ecosystem
is initialized with entities that each cover ondelal for one locus such that
collectively they cover all values for all problesariables.

The algorithm uses no mutation or other method eriegic variation; the only
operator that changes the make-up of the ecosyistére symbiogenic join. This join
produces a new entity, taking on the alleles fromche of its symbionts where
specified, (usually) resulting in a larger, bull gtartially specified entity.

Partial evaluation of solutions is not availablegeneral, and is not permitted in
this algorithm. Instead a partially specified gniit evaluated in context. A context is
simply a set of randomly generated values for eadblem variable that is not
specified by the entity under evaluation (see teweslin [6] and contexts in [21][5]).
Whilst individual entities are small with respeotthe ecosystem, the ecosystem has
niches for many small entities, and we would exgeath of these to be occupied at
any one time. As the result of the evaluationsoisshd up with some entities in
permanent symbiogenic association, it is not sifficto simply measure the fitness
of each entity in the ecosystem. Symbiotic relatfops are evaluated on a pairwise
basis, where the synergy afforded by a particutan jis assessed. Synergy is
measured for all pairs of entities in the ecosystamd for a meaningful measurement
this is performed over various contexts.

We define a fitness deltd, as the difference in fithess between a contx|one
and an entityA, in that context (Eqn. 1). Synergy,is defined as the difference in
fithess deltas of the symbioi#B, and the sum of the individual entities (Eqn. 2).

o(Ac)=f(A+c)- (o) (1)
S(A B,c) =0(A+B,c)-3d(A,c)-9(B,c) %))

This measure aims to quantify the additional beraftained by coexisting, over
individual existence. This is closely related toatvimight be called a measure of
epistasis betwee and B when in the context oft. The selection phase is a
competition between potential joins, and the masble are those with high synergy
scores. The symbiotic relationships are modeled ghat whilst high synergy is
rewarded, both symbionts must ‘want’ to make thia.jd his reciprocal synergy
maximization is key to assigning the correct symbiotic joinswe describe later. In
order to identify joins with both maximal synerggd reciprocal desire to unite from
A and B, we can consider the product of the synergy vafoesA+B and B+A.
(Contrast this with an alternative rule that is [giyn'maximize the overall synergy for
a pair’, which just sums(A+B) ands(B+A). This would allow joins where one entity
benefits significantly more than the other — a acienwe found to be unsuccessful).
In order for the product to be consistent all sggevalues must be unsigned. For
simplicity we also choose to normalize the rangghsthat all values will lie in the
range [0,1]. Once joins have been made, the géoeahtloop returns to the
evaluation stage, until all of the remaining eastare fully specified.

A number of points regarding the new algorithm ageth highlighting. We make
abstractions of several elements that are ofteseptan evolutionary algorithms. As
in SEAM, no population dynamics are modeled: weuanssthat all values for each
variable are already present in the ecosystemit@limation. Unlike in SEAM, the
interactions between entities are also idealized. a8sume that enough interactions
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occur in the timescale of a generation that we parform a fixed number of
interactions between every pair of entities in ¢kesystem rather than stochastically
sampling the interactions. The maximum number aisdhat can be made in one
generation is equal to half the current ecosystiem $n the current implementation
there is no method for undoing a join.

Initialize ecosystemwith all atomc units available in substrate
For g=1: MAX_GENERATI ONS
For c=1: CONTEXTS
Generate context as randombit-string
Eval uat e cont ext
For each pair of entities remaining in ecosystemA B
Eval uate A in context
Eval uate B in context
Superinpose A and B, eval uate synbiont in context
Cal cul ate synergy for A+B
For each pair A B cal cul ate nean synergy val ues across all
contexts
Process synergy matri x:
Rescal e synergy averages values to lie in range [0, 1]
Cal cul ate reciprocal synergy for each pair A B, by performng
the product of s(A B)*s(B, A
Find J highest reciprocal synergy val ues and nmake these joins
If all entities remaining have length N
Br eak

Report final ecosystem

Fig. 1. Psuedo-code for the Reciprocal Synergy Symbiokjsrshm

3 Simulation Experiments

3.1 Performanceon Shuffled-HIFF

In this section we verify that the RSSA can solke HIFF problem [19] that has
previously been used to exemplify the abilities tbE SEAM algorithm [21].
Hierarchical If-and-only-If is a test problem thatbuilt from a single subfunction of
If-and-only-If (IFF), the Boolean function of eqitgl Each pair of variables is
grouped into pairs using this same subfunctionnseeely, which results in an overall
function that is dependent on all of its variabléBhe IFF subfunction incorporates
epistasis between functional groups starting frdre bottom hierarchical layer
upwards and this causes the optima at each hiécaldbvel to be maximally distant
in Hamming space, creating ordérdependencies at the highest level. This means
that HIFF is pathologically difficult for a mutatieonly hill climbing process to solve
[19]. However it is an ideal candidate for solvinigh a compositional approach since
these dependencies have a clear modular struttaredmposition can exploit. Note
that a GA using suitable diversity maintenance ane-point crossover is successful
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on HIFF but only when the linkage map is tight. Bamising the linkage map such
that genetic linkage does not correspond to thetam structure of the problem
(shuffling) defeats the compositional mechanisntmissover in a GA. Simulations
verified that the RSSA solves a 256-bit shuffled=Hlin 30/30 runs demonstrating its
ability to exploit modular interdependency succekgin this problent

3.2 Performanceon VSM Problem

In this section, we compare RSSA against SEAM amal tariants of GA on a
modular test problem, the variable structural madty (VSM) problem [14]. The
specific instances used have clean modularitypédn unshuffled and shuffled cases.

The VSM problem is a test problem that parametsribe amount of structural
modularity to be present, and its modularity exisilmhodular interdependency [2]. It
is the simplest parameterized model to distingtihperformance of the GA and a
hill climber with respect to modularity exploitatioAs discussed in [14] a GA using
crossover can only exploit the modularity to sothe problem correctly if that
crossover mechanism preserves linkage. Therefgreddifying the physical linkage
such that it did not correspond to the epistatikdge (but the modular structures
remain), we expect to reveal a distinction betw#EnGA and RSSA. Although the
VSM permits a reduced amount of structural modtydd be present in problems, we
do not investigate this dimension of freedom irs §h@per. The reduction in structural
modularity makes the problem easier (see [14])sinde both the GA and RSSA can
solve the problem in the hardest case, little idod¢olearned about the distinction
between these two algorithms from easier, less modawoblems. Thus we only
investigate VSM instances with clean modularity aoth tight and random linkage.

In the VSM, the fitness of a genotype is definedreessum of weighted pairwise
dependencies between the problem variableaNAy-N matrix is used to define the
strength of each interaction, and these can bentmg@ in such a fashion that the
problem exhibits structural modularity. Each weigist only included in the
summation if the variable values in question sgti§fF (i.e. when both variables
agree) and the problem instance we choose haswostlasses of weights: strong
weights for interdependencies which are internamtzdules, and weak weights for
interdependencies between modules. We choose tp ¢ghe strong weights together
near to the leading diagonal of the weight matvikich introduces a number of
modules, the variables of which have tight linkagethe genome. The overall fithess
of a candidate is given by Eqn. 3. Egn. 4 describes specifictily location of the
weights used to structure the modularity. Note tdthough the problem is built
entirely from pairwise interactions, dependencias lbe structured to ‘act in concert’
to create local optima with significant Hammingtdizces between them [14].

L An early version of the RSSA found that joinidbpairs of variables with synergy>0 works
very well on HIFF. However, this joining rule isnsitive to the assumption that fitness
contributions combine linearly by default, and If fitnesses are increased by a slight
geometric scaling this method will erroneously jany pair of variables. To increase
robustness to fitness scaling, the RSSA joins thetreynergistic pairs of variables, and this
method works reliably on HIFE and HIFE as well as the default fitness scaling of HIFF.
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N-1N-1
F o) = 2 2w (x o ) ©
i=0 j=0
Cfwliflizk]=]j/k]
W, _{WE, otherwise . )

The problem parameters used a&e200,Z=k=20,wl=400,wE=1. RSSA uses 160
contexts and assigns a maximum proportion of Oiusjper generation. This uses
approximately 412 million evaluations. For the G#e use deterministic crowding as
a selection method, a mutation rate dd,4 population size of 4000, crossover rate of
0.05 (this is a low value but see [14] for discasyi SEAM uses 200 contexts to
make its joining decisions.

Table 1. Successful runs out of 30 for the VSM problemapaeters as in text above

VSM, 400 bit | SVSM, 400 bit
GA-DC 1point crossover 30/30 0/30
GA-DC uniform crossover 0/30 0/30
SEAM 0/30 0/30
RSSA 30/30 30/30

The results shown in Table 1 illustrate the abitifyRSSA to solve a second type
of modular problem. The joins made in RSSA explicirepresent epistatic
dependencies and shuffling the genetic map doesdetdr RSSA from reliably
solving either problem. The GA using one pointssaver solves the unshuffled
problem as it preserves linkage. However when teeetic map is randomized,
preserving (physical) linkage is no longer suffiti¢o exploit the modularity in the
problem, and it should be no surprise that the &éefeated on the shuffled problem.
Note that SEAM is unable to solve either of thessbfem configurations.

Fig. 2 shows the synergy matrices for examples B¥FHand VSM problems
created by RSSA, before any joins have been maueinstances shown are smaller
than those tested in order to show relevant ddiatlthe properties are qualitatively
alike. Note that the problem hakvariables but these matrices ar®)Y2since each
variable can take two values, and the relationshigsassumed to be independent.
Firstly considering Fig. 2(a), some of the struetaf the problem is revealed, but not
all. The number of contexts used is sufficient hwaver the next two or sometimes
three hierarchical layers, but an exponential iaseein the number of contexts is
required to see further layers. However, the inffan required to make the correct
joins for a single layer at a time is sufficient eshthe problem is solved in a
compositional manner. For the VSM (Fig. 2(b)), whicas only a single layer of
hierarchy, the entire structure is revealed: thentities produce high synergy with
other 1-entities within modules, and likewise feeritities. The bright line which runs
through all the dark blocks in the top-right andtbm-left quadrants represents high
synergy for two entities coding different values fhe same locus. None of these
joins should be made, but RSSA requires a largebeurof evaluations to reveal that
these joins are incorrect. Taking into accounteh®mergy matrices and the fact that
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(b)

Fig. 2. Synergy matrices from (a) 32-bit HIFF and (b) 68MS8M, Z=4 problems (unshuffle
genetic maps) before any joins have been made. Eatly (,]) represents the synel
between thdé™ andj™ problem variables. Strong syngrgalues are closer to white, we
synergy values are closer to black. Note how thestlevel modules are clear in both ca
but higher level interactions in HIFF are not visibntil the search space has been reduced

modular problems are solved by RSSA, we see thatatgorithm is capable of
correctly identifying modular structures and reusgglthat structure in the synergy
values it assesses.

4 Discussion

The RSSA introduced in this paper is both a singalifon and generalization of
SEAM and thereby expands the relevance of symbiosfEred algorithms. In
section 1 we identified a number of shortcomingVEAM. Here we revisit these
limitations, noting how they are addressed by RSB#e use of a Pareto dominance
mechanism to make joining decisions is weak bi@aly: it is difficult to imagine
two entities not making a join until they have madesolutely sure there is no other
alternative symbiotic partner they would ratherviath. We replace this mechanism
with one that feels more likely in a biological ®m,; that is, the associations that
have the strongest synergy for both partners résudymbiotic joins most readily.
This also has the algorithmic advantage that itentbirectly assesses and exploits the
epistasis in the problem. Where SEAM required cbagcontexts, the RSSA shows
that randomly generated templates are sufficientfaiilitate the evaluation of
partially specified entities. Although comprehersdyv describing the algorithmic
niche of the RSSA remains an open question, wea@mnédent that it is broader than
SEAM: the only problem SEAM is shown to be compéten is shuffled-HIFF and
the RSSA is here demonstrated to solve both shuHIE-F and another, and less
contrived, form of modular problem that SEAM cansolve.
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There are several areas of future research andogerent, two of which concern
the interactions which are used to determine sytitbjoins. Currently RSSA only
makes joins between two entities (although eacltyemtay contain many variable
values), but there is scope for uniting larger g=uThis would not necessarily
require the evaluation of symbiotic groups of mtran two entities at a time, but
could occur when high synergy was identified in @édlirs within the group. The
interactions could also be focused selectively.rénity all (2N)? pairs of entities are
evaluated in the same number of contexts. But wghirimagine that when one pair
of entities consistently discovers low synergy ssorthat their frequency of
interaction (i.e. the number of additional contetktsy are tested in) would decline,
but pairs which show promise of high reciprocalesgy would be allocated further
contexts to confirm the value of a join. Althougtt i key factor here since we have
been examining the generality of the algorithm eathhan its efficiency, the
computational expense of the algorithm is high.Bof these two modifications
would reduce the average number of evaluationgofrerFinally, we aim to ascertain
the ability of RSSA to solve a wider set of modytaoblems, both hierarchical and
flat in structure. It would also be of interest égxamine its robustness to the
parameterizable modular structures described ih [14

5 Conclusion

In this paper we have presented a new model irdgise symbiosis, with a more
straightforward compositional mechanism than thegduby SEAM and a simpler
biological interpretation than any previous symisdaspired algorithm. We have
used the algorithm to explore various possibiligggmbled by using symbiosis as a
variation operator. As in previous studies, walfincan solve problems that cannot
be solved with the more traditional variation opers of crossover and mutation. The
experiments performed show the applicability of RIS widened when compared
with SEAM and it is able to demonstrate an algonith advantage over the simple
GA on problems with a very simple and intuitive mtad structure. In addition, we
can observe the structure that is discovered byatberithm which may provide
insight into the characteristics of less neatlyrfed problems.

Understanding the adaptive significance of the maeolutionary transitions,
genetic events of symbiogenesis, and more genertilly formation of adaptive
associations among symbionts is critical to evohdry theory and explaining how
evolution works in full [12]. In our work we wanb tunderstand not only the
conditions under which such events may occur, et ahat consequence such
events might have for evolutionary adaptation ahd evolvability of complex
systems. Intuitively, modularity has a significampact on evolvability but only if
there are appropriate mechanisms to exploit it.s&veer in the simple GA cannot
exploit modularity unless genetic linkage corresfmnvith epistatic dependencies,
but because the symbiotic joining mechanism modb&ré is insensitive to genetic
linkage it can exploit modularity that cannot beplexed by the simple GA. It has
been shown previously that symbiosis-inspired meisinas can in principle provide a
fundamentally different form of adaptation from tiwvariation of mutation and



10

Rob Millsand Richard A. Watson

crossover in the simple GA [21]. However, the exrglion of the space in which

these types of mechanisms have an advantagetssiitfancy. In this paper we make
some significant improvements over previous attempt provide a simple

algorithmic model of the formation of symbiotic as&tions and to describe the kind
of modularity it can exploit.
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