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Abstract. Symbiosis, the collaboration of multiple organisms from different 
species, is common in nature. A related phenomenon, symbiogenesis, the 
creation of new species through the genetic integration of symbionts, is a 
powerful alternative to crossover as a variation operator in evolutionary 
algorithms. It has inspired several previous models that use the repeated 
composition of pre-adapted entities. In this paper we introduce a new algorithm 
utilizing this concept of symbiosis which is simpler and has a more natural 
interpretation when compared with previous algorithms. In addition it achieves 
success on a broader class of modular problems than some prior methods.  

1 Introduction 

Collaboration between organisms of different types is called symbiosis [13], and such 
relationships are common in nature, particularly amongst prokaryotes [10]. When 
symbiotic associations persist over evolutionary timescales, the entities involved may 
become reproductively inseparable and Konstantin S. Merezhkovsky named this 
symbiogenesis [8]. Symbiogenesis is thought to have been responsible for several 
major evolutionary transitions [12], including ‘perhaps the most important and 
dramatic event in the history of life […] – the origin of eukaryotes’ [13, p51] when an 
archaebacterium and a eubacterium in a symbiotic relationship were genetically 
joined [11].  

The genetic algorithm (GA) is one model of evolution and is useful as it allows us 
to investigate and understand the process of natural selection. It has distilled some key 
elements of evolution, such as the ever-repeating process of inherited variation 
followed by differential selection.  However, one key aspect that is not captured by a 
model like the GA is macroevolution: processes that occur above the level of the 
species. Symbiosis and symbiogenesis are mechanisms that require a 
macroevolutionary model to explore successfully. The variation offered by 
symbiogenesis is qualitatively different from sexual crossover: it offers the union of 
two sets of pre-adapted genetic material. If this process is repeated, the complexity of 
the resultant entity can be far greater than that of the original entities involved. We 
call this process compositional evolution [22], and models that investigate this type of 
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process may shed light on how modular encapsulation facilitates macroevolutionary 
trends such as the major evolutionary transitions. 

Compositional evolution is of interest algorithmically as well as biologically, and 
this phenomenon has given rise to several algorithms that employ a symbiotic 
mechanism. Some have been aimed both at a computational biology audience (e.g. 
[21]) and problem solving in evolutionary computation (e.g. [5][4]).  In this paper we 
consider a new model and investigate its utility upon optimization problems. 

A symbiotic approach is particularly suited to hierarchically modular problems: the 
solution space is searched with entities of increasing complexity and stability, initially 
identifying optimal configurations for small subsets of variables, but progressively 
increasing the size of subsets by combining the optimal configurations for different 
variable subsets.  However, we believe that employing symbiotic variation has the 
ability to exploit any modularity, hierarchically organized or not. We observe modular 
structures in a wide range of biological [7], physical [18] and engineered systems [1]. 
In such systems individual parts may be solved in partial or full isolation from other 
portions of the system [1][18]. In problems exhibiting this type of decomposability, 
algorithms that exploit this knowledge should outperform algorithms that do not 
exploit modular structures. The canonical example of an algorithm which does not 
exploit modularity is a simple hill climbing process which can only advance in the 
search space with gradual steps of improvement. There are a number of algorithms 
that attempt to exploit modular structures, including the genetic algorithm (GA) 
[20][14], cooperative coevolution [17], and estimation of distribution algorithms such 
as the Bayesian optimization algorithm [16]. Here we address the type of algorithm 
that is explicitly compositional as mentioned above. There are also a number of test 
problems in the literature that exhibit modular properties, including concatenated 
functions of unitation [3], and royal roads [15].  Here we utilize functions with 
hierarchical modularity [19], and parameterizable structural modularity [14]. 

In the remainder of this section we review the Symbiogenic Evolutionary 
Adaptation Model (SEAM) [21], identify limitations and propose possible methods to 
address certain limitations of this approach with a new computational algorithm. 

SEAM is an early evolutionary algorithm inspired by symbiogenesis [21]. It differs 
from typical evolutionary algorithms (EA) in several aspects. These include the 
symbiogenic variation operator, an ecosystem of entities which are partially specified, 
and coevolved ecosystem templates that are used to facilitate evaluation. The main 
pool of genetic material represents an ecosystem of many different entities, each 
specifying only part of an overall solution. There is no source of new genetic material 
(i.e. no mutation), and the only variation operator is the symbiotic join of two entities. 
The main loop of the algorithm operates as follows: two entities are picked at random, 
and evaluated in a number of contexts to determine if the pair should make a 
permanent symbiogenic alliance. A version of Pareto-dominance (see [21]) is used to 
make these decisions. If this is the case, the two symbionts are removed from the 
ecosystem and replaced with the chimera. As this process is repeated, the average size 
of entities will increase until fully specified solutions are discovered. 

SEAM has several limitations: the Pareto dominance mechanism employed to 
determine whether a join should be made is unnecessarily complicated. Assembling 
contexts from other entities within the ecosystem, although arguably natural, is (we 
will show) an unnecessary assumption. Finally, SEAM’s performance in other 
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problem domains is severely brittle: the utility of SEAM has only been demonstrated 
on a stylized hierarchical function, Hierarchical If-and-only-If (HIFF) [19]. 

Following [21] we develop a new symbiosis-inspired algorithm where individuals 
repeatedly test and make pairwise joins to compose larger and larger entities, resulting 
in problem solutions. As in prior work, we are also interested in understanding what 
symbiosis can offer us algorithmically, when compared with mutation and sexual 
recombination. Symbiosis potentially offers compositional evolution which can, 
where the problem domain allows, provide a fundamentally different form of 
adaptation from the gradualist framework by exploiting divide and conquer problem 
decomposition [22]. The shuffled-HIFF test problem, for example, can be solved by 
the composition provided by SEAM in time polynomial in the problem size, but 
neither a hill climbing process nor a GA using sexual crossover can be guaranteed to 
reach the optimum in less than exponential time [21][22]. Our new compositional 
algorithm can also reliably solve shuffled-HIFF, but also extends the scope of 
applicability to include a single-layered modular problem that is somewhat less 
contrived than shuffled-HIFF. The single-layered modular problem is, however, also 
beyond the competence of hill climbing and sexual crossover in the simple GA [14]. 
In addition to being more general, the new algorithm has a much simpler biological 
interpretation than SEAM, removing several markedly complicated components of 
the algorithm, as we shall discuss. Thus we provide an illustration of compositional 
evolution that is shown to be capable of exploiting the divide and conquer advantage 
of composition by solving a problem with modular interdependency [2].  The 
mechanism has relatively straightforward biological analogues in the formation of 
symbiotic associations, yet its adaptive capacity remains algorithmically distinct from 
that of the simple GA. The modularity exploited by this mechanism, as shown in the 
problem class we illustrate, is also a straightforward kind of modularity with a simple 
intuitive structure. Together this indicates that the breadth and potential impact of 
symbiosis and compositional mechanisms in natural systems could be much broader 
than the results supported by prior work, and brings us a step closer to developing 
biologically relevant algorithms of hierarchical adaptive processes and the major 
transitions in evolution. The new algorithm uses an abstraction of symbiogenesis as 
its variation operator, and decisions on when to invoke this mechanism to create a 
permanent association between entities are based on selecting symbiotic relationships 
with maximal synergy (synergy is essentially a measure of how much greater the 
symbiont is over the sum of the individual effects). 

2 The Reciprocal Synergy Symbiosis Algorithm 

This section describes the new algorithm presented and investigated in this paper. The 
Reciprocal Synergy Symbiosis Algorithm (RSSA) uses a generational loop consisting 
of evaluation, selection and variation, in common with a regular EA. However, 
significant differences exist in each of these stages as well as the representation used 
for a candidate. Psuedocode for the algorithm is given in Fig 1. 

A population of candidates is used but they are intended to represent distinct 
entities in an ecosystem, rather than all competing for the same niche. As such a 
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candidate entity only specifies alleles for a subset of the problem loci. The ecosystem 
is initialized with entities that each cover one allele for one locus such that 
collectively they cover all values for all problem variables. 

The algorithm uses no mutation or other method of genetic variation; the only 
operator that changes the make-up of the ecosystem is the symbiogenic join. This join 
produces a new entity, taking on the alleles from each of its symbionts where 
specified, (usually) resulting in a larger, but still partially specified entity. 

Partial evaluation of solutions is not available in general, and is not permitted in 
this algorithm. Instead a partially specified entity is evaluated in context.  A context is 
simply a set of randomly generated values for each problem variable that is not 
specified by the entity under evaluation (see templates in [6] and contexts in [21][5]).  
Whilst individual entities are small with respect to the ecosystem, the ecosystem has 
niches for many small entities, and we would expect each of these to be occupied at 
any one time. As the result of the evaluations is to end up with some entities in 
permanent symbiogenic association, it is not sufficient to simply measure the fitness 
of each entity in the ecosystem. Symbiotic relationships are evaluated on a pairwise 
basis, where the synergy afforded by a particular join is assessed. Synergy is 
measured for all pairs of entities in the ecosystem, and for a meaningful measurement 
this is performed over various contexts.  

We define a fitness delta, 
�
, as the difference in fitness between a context, c, alone 

and an entity, A, in that context (Eqn. 1). Synergy, s, is defined as the difference in 
fitness deltas of the symbiont, A+B, and the sum of the individual entities (Eqn. 2). 

)()(),( cfcAfcA −+=δ  (1) 

),(),(),(),,( cBcAcBAcBAs δδδ −−+=  (2) 

This measure aims to quantify the additional benefit obtained by coexisting, over 
individual existence. This is closely related to what might be called a measure of 
epistasis between A and B when in the context of c. The selection phase is a 
competition between potential joins, and the most viable are those with high synergy 
scores. The symbiotic relationships are modeled such that whilst high synergy is 
rewarded, both symbionts must ‘want’ to make the join. This reciprocal synergy 
maximization is key to assigning the correct symbiotic joins, as we describe later. In 
order to identify joins with both maximal synergy and reciprocal desire to unite from 
A and B, we can consider the product of the synergy values for A+B and B+A. 
(Contrast this with an alternative rule that is simply ‘maximize the overall synergy for 
a pair’, which just sums s(A+B) and s(B+A). This would allow joins where one entity 
benefits significantly more than the other – a scenario we found to be unsuccessful). 
In order for the product to be consistent all synergy values must be unsigned. For 
simplicity we also choose to normalize the range, such that all values will lie in the 
range [0,1]. Once joins have been made, the generational loop returns to the 
evaluation stage, until all of the remaining entities are fully specified. 

A number of points regarding the new algorithm are worth highlighting. We make 
abstractions of several elements that are often present in evolutionary algorithms. As 
in SEAM, no population dynamics are modeled: we assume that all values for each 
variable are already present in the ecosystem at initialization. Unlike in SEAM, the 
interactions between entities are also idealized. We assume that enough interactions 
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occur in the timescale of a generation that we can perform a fixed number of 
interactions between every pair of entities in the ecosystem rather than stochastically 
sampling the interactions. The maximum number of joins that can be made in one 
generation is equal to half the current ecosystem size. In the current implementation 
there is no method for undoing a join. 

 

 Fig. 1. Psuedo-code for the Reciprocal Synergy Symbiosis Algorithm 

3 Simulation Experiments 

3.1 Performance on Shuffled-HIFF 

In this section we verify that the RSSA can solve the HIFF problem [19] that has 
previously been used to exemplify the abilities of the SEAM algorithm [21].  
Hierarchical If-and-only-If is a test problem that is built from a single subfunction of 
If-and-only-If (IFF), the Boolean function of equality. Each pair of variables is 
grouped into pairs using this same subfunction recursively, which results in an overall 
function that is dependent on all of its variables.  The IFF subfunction incorporates 
epistasis between functional groups starting from the bottom hierarchical layer 
upwards and this causes the optima at each hierarchical level to be maximally distant 
in Hamming space, creating order-N dependencies at the highest level. This means 
that HIFF is pathologically difficult for a mutation-only hill climbing process to solve 
[19]. However it is an ideal candidate for solving with a compositional approach since 
these dependencies have a clear modular structure that composition can exploit. Note 
that a GA using suitable diversity maintenance and one-point crossover is successful 

Initialize ecosystem with all atomic units available in substrate 
For g=1:MAX_GENERATIONS 

For c=1:CONTEXTS 
Generate context as random bit-string 
Evaluate context 
For each pair of entities remaining in ecosystem A,B 
Evaluate A in context  
Evaluate B in context  
Superimpose A and B, evaluate symbiont in context  
Calculate synergy for A+B 

For each pair A,B calculate mean synergy values across all 
contexts 
Process synergy matrix: 
Rescale synergy averages values to lie in range [0,1] 
Calculate reciprocal synergy for each pair A,B, by performing 
the product of s(A,B)*s(B,A) 

Find J highest reciprocal synergy values and make these joins 
If all entities remaining have length N 
Break 

Report final ecosystem 
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on HIFF but only when the linkage map is tight. Randomising the linkage map such 
that genetic linkage does not correspond to the epistatic structure of the problem 
(shuffling) defeats the compositional mechanism of crossover in a GA. Simulations 
verified that the RSSA solves a 256-bit shuffled-HIFF in 30/30 runs demonstrating its 
ability to exploit modular interdependency successfully in this problem.1  

3.2 Performance on VSM Problem 

In this section, we compare RSSA against SEAM and two variants of GA on a 
modular test problem, the variable structural modularity (VSM) problem [14]. The 
specific instances used have clean modularity, for both unshuffled and shuffled cases. 

The VSM problem is a test problem that parameterizes the amount of structural 
modularity to be present, and its modularity exhibits modular interdependency [2]. It 
is the simplest parameterized model to distinguish the performance of the GA and a 
hill climber with respect to modularity exploitation. As discussed in [14] a GA using 
crossover can only exploit the modularity to solve the problem correctly if that 
crossover mechanism preserves linkage. Therefore, by modifying the physical linkage 
such that it did not correspond to the epistatic linkage (but the modular structures 
remain), we expect to reveal a distinction between the GA and RSSA. Although the 
VSM permits a reduced amount of structural modularity to be present in problems, we 
do not investigate this dimension of freedom in this paper. The reduction in structural 
modularity makes the problem easier (see [14]) but since both the GA and RSSA can 
solve the problem in the hardest case, little is to be learned about the distinction 
between these two algorithms from easier, less modular problems. Thus we only 
investigate VSM instances with clean modularity and both tight and random linkage.  

In the VSM, the fitness of a genotype is defined as the sum of weighted pairwise 
dependencies between the problem variables. An N-by-N matrix is used to define the 
strength of each interaction, and these can be organized in such a fashion that the 
problem exhibits structural modularity. Each weight is only included in the 
summation if the variable values in question satisfy IFF (i.e. when both variables 
agree) and the problem instance we choose has just two classes of weights: strong 
weights for interdependencies which are internal to modules, and weak weights for 
interdependencies between modules. We choose to group the strong weights together 
near to the leading diagonal of the weight matrix, which introduces a number of 
modules, the variables of which have tight linkage on the genome. The overall fitness 
of a candidate x is given by Eqn. 3. Eqn. 4 describes specifically the location of the 
weights used to structure the modularity.  Note that although the problem is built 
entirely from pairwise interactions, dependencies can be structured to ‘act in concert’ 
to create local optima with significant Hamming distances between them [14]. 

                                                           
1  An early version of the RSSA found that joining all pairs of variables with synergy>0 works 

very well on HIFF. However, this joining rule is sensitive to the assumption that fitness 
contributions combine linearly by default, and if all fitnesses are increased by a slight 
geometric scaling this method will erroneously join any pair of variables. To increase 
robustness to fitness scaling, the RSSA joins the most synergistic pairs of variables, and this 
method works reliably on HIFF0.5 and HIFF2 as well as the default fitness scaling of HIFF. 



Symbiosis, Synergy and Modularity: Introducing the Reciprocal Synergy Symbiosis 
Algorithm      7 

( ) ( )∑∑−
=

−

=
− ↔=

1

0

1

0
110 ,...,,

N

i

N

j
jiijN xxwxxxF  (3) 

� � � �

.

//

,

,

otherwise

kjkiif

wE

wI
w

ij

=
�
�
�

=  (4) 

The problem parameters used are: N=400, Z=k=20, wI=400, wE=1. RSSA uses 160 
contexts and assigns a maximum proportion of 0.5 joins per generation. This uses 
approximately 412 million evaluations. For the GAs we use deterministic crowding as 
a selection method, a mutation rate of 4/N, a population size of 4000, crossover rate of 
0.05 (this is a low value but see [14] for discussion). SEAM uses 200 contexts to 
make its joining decisions. 

Table 1. Successful runs out of 30 for the VSM problem, parameters as in text above 

 VSM, 400 bit S-VSM, 400 bit 
GA-DC 1point crossover 30/30 0/30 
GA-DC uniform crossover 0/30 0/30 
SEAM 0/30 0/30 
RSSA 30/30 30/30 

The results shown in Table 1 illustrate the ability of RSSA to solve a second type 
of modular problem.  The joins made in RSSA explicitly represent epistatic 
dependencies and shuffling the genetic map does not deter RSSA from reliably 
solving either problem.  The GA using one point crossover solves the unshuffled 
problem as it preserves linkage. However when the genetic map is randomized, 
preserving (physical) linkage is no longer sufficient to exploit the modularity in the 
problem, and it should be no surprise that the GA is defeated on the shuffled problem. 
Note that SEAM is unable to solve either of these problem configurations.  

Fig. 2 shows the synergy matrices for examples of HIFF and VSM problems 
created by RSSA, before any joins have been made. The instances shown are smaller 
than those tested in order to show relevant detail, but the properties are qualitatively 
alike. Note that the problem has N variables but these matrices are (2N)2 since each 
variable can take two values, and the relationships are assumed to be independent. 
Firstly considering Fig. 2(a), some of the structure of the problem is revealed, but not 
all. The number of contexts used is sufficient to uncover the next two or sometimes 
three hierarchical layers, but an exponential increase in the number of contexts is 
required to see further layers. However, the information required to make the correct 
joins for a single layer at a time is sufficient when the problem is solved in a 
compositional manner. For the VSM (Fig. 2(b)), which has only a single layer of 
hierarchy, the entire structure is revealed: the 1-entities produce high synergy with 
other 1-entities within modules, and likewise for 0-entities. The bright line which runs 
through all the dark blocks in the top-right and bottom-left quadrants represents high 
synergy for two entities coding different values for the same locus. None of these 
joins should be made, but RSSA requires a large number of evaluations to reveal that 
these joins are incorrect. Taking into account these synergy matrices and the fact that 



8      Rob Mills and Richard A. Watson 

modular problems are solved by RSSA, we see that our algorithm is capable of 
correctly identifying modular structures and revealing that structure in the synergy 
values it assesses.  

4 Discussion 

The RSSA introduced in this paper is both a simplification and generalization of 
SEAM and thereby expands the relevance of symbiosis-inspired algorithms. In 
section 1 we identified a number of shortcomings with SEAM. Here we revisit these 
limitations, noting how they are addressed by  RSSA. The use of a Pareto dominance 
mechanism to make joining decisions is weak biologically: it is difficult to imagine 
two entities not making a join until they have made absolutely sure there is no other 
alternative symbiotic partner they would rather be with. We replace this mechanism 
with one that feels more likely in a biological system; that is, the associations that 
have the strongest synergy for both partners result in symbiotic joins most readily. 
This also has the algorithmic advantage that it more directly assesses and exploits the 
epistasis in the problem. Where SEAM required coevolved contexts, the RSSA shows 
that randomly generated templates are sufficient to facilitate the evaluation of 
partially specified entities. Although comprehensively describing the algorithmic 
niche of the RSSA remains an open question, we are confident that it is broader than 
SEAM:  the only problem SEAM is shown to be competent on is shuffled-HIFF and 
the RSSA is here demonstrated to solve both shuffled-HIFF and another, and less 
contrived, form of modular problem that SEAM cannot solve. 

Fig. 2. Synergy matrices from (a) 32-bit HIFF and (b) 64-bit VSM, Z=4 problems (unshuffled 
genetic maps) before any joins have been made. Each entry (i,j) represents the synergy 
between the ith and jth problem variables. Strong synergy values are closer to white, weak 
synergy values are closer to black. Note how the lowest level modules are clear in both cases, 
but higher level interactions in HIFF are not visible until the search space has been reduced 
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There are several areas of future research and development, two of which concern 
the interactions which are used to determine symbiotic joins. Currently RSSA only 
makes joins between two entities (although each entity may contain many variable 
values), but there is scope for uniting larger groups. This would not necessarily 
require the evaluation of symbiotic groups of more than two entities at a time, but 
could occur when high synergy was identified in all pairs within the group. The 
interactions could also be focused selectively. Currently all (2N)2 pairs of entities are 
evaluated in the same number of contexts. But we might imagine that when one pair 
of entities consistently discovers low synergy scores that their frequency of 
interaction (i.e. the number of additional contexts they are tested in) would decline, 
but pairs which show promise of high reciprocal synergy would be allocated further 
contexts to confirm the value of a join. Although not a key factor here since we have 
been examining the generality of the algorithm rather than its efficiency, the 
computational expense of the algorithm is high. Both of these two modifications 
would reduce the average number of evaluations per join. Finally, we aim to ascertain 
the ability of RSSA to solve a wider set of modular problems, both hierarchical and 
flat in structure. It would also be of interest to examine its robustness to the 
parameterizable modular structures described in [14]. 

5 Conclusion 

In this paper we have presented a new model inspired by symbiosis, with a more 
straightforward compositional mechanism than that used by SEAM and a simpler 
biological interpretation than any previous symbiosis-inspired algorithm.  We have 
used the algorithm to explore various possibilities enabled by using symbiosis as a 
variation operator.  As in previous studies, we find it can solve problems that cannot 
be solved with the more traditional variation operators of crossover and mutation. The 
experiments performed show the applicability of RSSA is widened when compared 
with SEAM and it is able to demonstrate an algorithmic advantage over the simple 
GA on problems with a very simple and intuitive modular structure. In addition, we 
can observe the structure that is discovered by the algorithm which may provide 
insight into the characteristics of less neatly formed problems. 

Understanding the adaptive significance of the major evolutionary transitions, 
genetic events of symbiogenesis, and more generally, the formation of adaptive 
associations among symbionts is critical to evolutionary theory and explaining how 
evolution works in full [12]. In our work we want to understand not only the 
conditions under which such events may occur, but also what consequence such 
events might have for evolutionary adaptation and the evolvability of complex 
systems. Intuitively, modularity has a significant impact on evolvability but only if 
there are appropriate mechanisms to exploit it. Crossover in the simple GA cannot 
exploit modularity unless genetic linkage corresponds with epistatic dependencies, 
but because the symbiotic joining mechanism modeled here is insensitive to genetic 
linkage it can exploit modularity that cannot be exploited by the simple GA. It has 
been shown previously that symbiosis-inspired mechanisms can in principle provide a 
fundamentally different form of adaptation from the variation of mutation and 
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crossover in the simple GA [21]. However, the exploration of the space in which 
these types of mechanisms have an advantage is in its infancy. In this paper we make 
some significant improvements over previous attempts to provide a simple 
algorithmic model of the formation of symbiotic associations and to describe the kind 
of modularity it can exploit. 
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