Skip to main content

Symbiosis, Synergy and Modularity: Introducing the Reciprocal Synergy Symbiosis Algorithm

  • Conference paper
Advances in Artificial Life (ECAL 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4648))

Included in the following conference series:

Abstract

Symbiosis, the collaboration of multiple organisms from different species, is common in nature. A related phenomenon, symbiogenesis, the creation of new species through the genetic integration of symbionts, is a powerful alternative to crossover as a variation operator in evolutionary algorithms. It has inspired several previous models that use the repeated composition of pre-adapted entities. In this paper we introduce a new algorithm utilizing this concept of symbiosis which is simpler and has a more natural interpretation when compared with previous algorithms. In addition it achieves success on a broader class of modular problems than some prior methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baldwin, C.Y., Clark, K.B.: Design Rules, vol. 1: The Power of Modularity. MIT Press, Cambridge (2000)

    Google Scholar 

  2. Dauscher, P., Polani, D., Watson, R.A.: A simple modularity measure for search spaces based on information theory. In: Procs. Artificial Life X (2006)

    Google Scholar 

  3. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. In: Whitley, D. (ed.) FOGA 2, pp. 98–108. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  4. Defaweux, A., Lenaerts, T., van Hemert, J.I.: Evolutionary Transitions as a Metaphor for Evolutionary Optimisation. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 342–352. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. de Jong, E.D., Watson, R.A., Thierens, D.: on the complexity of hierarchical problem solving. In: Procs. GECCO (2005)

    Google Scholar 

  6. Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: Motivation, analysis, and first results. Complex Systems 3, 493–530 (1989)

    MATH  Google Scholar 

  7. Higgs, P.G.: RNA secondary structure: physical and computational aspects. Quarterly Reviews of Biophysics 8(4), 373–391 (2000)

    Google Scholar 

  8. Khakhina, L.N. (Author), Coalson, R., Margulis, L., McMenamin, M. (eds.): Concepts of Symbiogenesis: Historical and Critical Study of the Research of Russian Botanists. Yale University Press, New Haven (1992)

    Google Scholar 

  9. Mahfoud, S.: Crowding and Preselection Revisited. In: PPSN 2, pp. 27–36. Elsevier, Amsterdam (1992)

    Google Scholar 

  10. Margulis, L.: The Symbiotic Planet: A new look at evolution. Phoenix, London (1998)

    Google Scholar 

  11. Margulis, L., Dolan, M.F., Guerrero, R.: The chimeric eukaryote: Origin of the nucleus from the karyomastigont in amitochondriate protists. PNAS 97(13), 6954–6959 (2000)

    Article  Google Scholar 

  12. Maynard Smith, J., Szathmary, E.: The major transitions in evolution. W.H. Freeman, New York (1995)

    Google Scholar 

  13. Mayr, E.: What Evolution is. Phoenix, London (2001)

    Google Scholar 

  14. Mills, R., Watson, R.A.: Variable Discrimination of Crossover Versus Mutation Using Parameterized Modular Structure. In: GECCO (in press, 2007)

    Google Scholar 

  15. Mitchell, M., Forrest, S., Holland, J.H.: The Royal Road for Genetic Algorithms: Fitness Landscapes and GA Performance. In: ECAL 1, MIT Press, Cambridge (1992)

    Google Scholar 

  16. Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: The Bayesian optimization algorithm. In: Procs. GECCO (1999)

    Google Scholar 

  17. Potter, M.A.: The Design and Analysis of a Computational Model of Cooperative Coevolution. Ph.D. dissertation, George Mason University, Fairfax, Virginia (1997)

    Google Scholar 

  18. Simon, H.: Sciences of the Artificial. MIT Press, Cambridge (1969)

    Google Scholar 

  19. Watson, R.A., Hornby, G.S., Pollack, J.B.: Modeling Building Block Interdependency. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN V. LNCS, vol. 1498, pp. 97–106. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  20. Watson, R.A., Jansen, T.: A building block royal road where crossover is provably essential. In: GECCO (in press, 2007)

    Google Scholar 

  21. Watson, R.A., Pollack, J.B.: A Computational Model of Symbiotic Composition in Evolutionary Transitions. BioSystems 69(2–3), 187–209 (2003)

    Article  Google Scholar 

  22. Watson, R.A.: Compositional Evolution. MIT Press, Cambridge (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fernando Almeida e Costa Luis Mateus Rocha Ernesto Costa Inman Harvey António Coutinho

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mills, R., Watson, R.A. (2007). Symbiosis, Synergy and Modularity: Introducing the Reciprocal Synergy Symbiosis Algorithm. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds) Advances in Artificial Life. ECAL 2007. Lecture Notes in Computer Science(), vol 4648. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74913-4_119

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74913-4_119

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74912-7

  • Online ISBN: 978-3-540-74913-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics