Skip to main content

Classical and Intuitionistic Logic Are Asymptotically Identical

  • Conference paper
Computer Science Logic (CSL 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4646))

Included in the following conference series:

Abstract

This paper considers logical formulas built on the single binary connector of implication and a finite number of variables. When the number of variables becomes large, we prove the following quantitative results: asymptotically, all classical tautologies are simple tautologies. It follows that asymptotically, all classical tautologies are intuitionistic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chauvin, B., Flajolet, P., Gardy, D., Gittenberger, B.: And/Or trees revisited. Combinatorics, Probability and Computing 13(4-5), 475–497 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Flajolet, P., Sedgewick, R.: Analytic combinatorics: functional equations, rational and algebraic functions, INRIA, Number 4103 (2001)

    Google Scholar 

  3. Flajolet, P., Sedgewick, R.: Analytic combinatorics. Book in preparation (2007), available at http://algo.inria.fr/flajolet/Publications/books.html

  4. Gardy, D.: Random Boolean expressions, Colloquium on Computational Logic and Applications. In: Proceedings in DMTCS, Chambery (France), June 2005, pp. 1–36 (2006)

    Google Scholar 

  5. Gardy, D., Woods, A.: And/or tree probabilities of Boolean function. Discrete Mathematics and Theoretical Computer Science, 139–146 (2005)

    Google Scholar 

  6. Kostrzycka, Z., Zaionc, M.: Statistics of intuitionnistic versus classical logic. Studia Logica 76(3), 307–328 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lefmann, H., Savický, P.: Some typical properties of large And/Or Boolean formulas. Random Structures and Algorithms 10, 337–351 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Matecki, G.: Asymptotic density for equivalence. Electronic Notes in Theoretical Computer Science 140, 81–91 (2005)

    Article  MathSciNet  Google Scholar 

  9. Moczurad, M., Tyszkiewicz, J., Zaionc, M.: Statistical properties of simple types. Mathematical Structures in Computer Science 10(5), 575–594 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Sørensen, M., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Studies in Logic and the Foundations of Mathematics 149 (2006)

    Google Scholar 

  11. Wilf, H.: Generatingfunctionology, 2nd edn. Academic Press, Boston (1994)

    MATH  Google Scholar 

  12. Zaionc, M.: On the asymptotic density of tautologies in logic of implication and negation. Reports on Mathematical Logic 39, 67–87 (2005)

    MATH  MathSciNet  Google Scholar 

  13. Zaionc, M.: Probability distribution for simple tautologies. Theoretical Computer Science 355(2), 243–260 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Duparc Thomas A. Henzinger

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fournier, H., Gardy, D., Genitrini, A., Zaionc, M. (2007). Classical and Intuitionistic Logic Are Asymptotically Identical. In: Duparc, J., Henzinger, T.A. (eds) Computer Science Logic. CSL 2007. Lecture Notes in Computer Science, vol 4646. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74915-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74915-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74914-1

  • Online ISBN: 978-3-540-74915-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics