Abstract
Models of the untyped λ-calculus may be defined either as applicative structures satisfying a bunch of first-order axioms (λ-models), or as reflexive objects in cartesian closed categories (categorical models). In this paper we show that any categorical model of λ-calculus can be presented as a λ-model, even when the underlying category does not have enough points. We provide an example of an extensional model of λ-calculus in a category of sets and relations which has not enough points. Finally, we present some of its algebraic properties which make it suitable for dealing with non-deterministic extensions of λ-calculus.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Information and Computation 163(2), 409–470 (2000)
Amadio, R.M., Curien, P.-L.: Domains and lambda-calculi. Cambridge University Press, New York (1998)
Asperti, A., Longo, G.: Categories, types and structures. In: Categories, types and structures, MIT Press, Cambridge (1991)
Barendregt, H.P.: The lambda calculus: Its syntax and semantics. North-Holland Publishing Co., Amsterdam (1984)
Berline, C.: From computation to foundations via functions and application: The λ-calculus and its webbed models. Theoretical Computer Science 249, 81–161 (2000)
Berry, G., Curien, P.-L.: Sequential algorithms on concrete data structures. Theoretical Computer Science 20, 265–321 (1985)
Bucciarelli, A., Ehrhard, T.: On phase semantics and denotational semantics: the exponentials. Ann. Pure Appl. Logic 109(3), 205–241 (2001)
Curry, H.B., Feys, R.: Combinatory Logic, vol. I. North-Holland, Amsterdam (1958)
Dezani Ciancaglini, M., de’Liguoro, U., Piperno, A.: A filter model for concurrent λ-calculus. SIAM Journal of Computing 27(5), 1376–1419 (1998)
de’Liguoro, U., Piperno, A.: Non deterministic extensions of untyped λ-calculus. Information and Computation 109, 149–177 (1955)
Di Gianantonio, P., Franco, G., Honsell, F.: Game semantics for untyped lambda calculus. In: Duke, D.J., Marshall, M.S., Herman, I. (eds.) PREMO: A Framework for Multimedia Middleware. LNCS, vol. 1591, pp. 114–128. Springer, Heidelberg (1999)
Girard, J.-Y.: Normal functors, power series and the λ-calculus. Annals of pure and applied logic 37, 129–177 (1988)
Hindley, J.R., Longo, G.: Lambda calculus models and extensionality. Z. Math. Logik Grundlag. Math. 26, 289–310 (1980)
Hyland, M.: A syntactic characterization of the equality in some models for the lambda calculus. J. London Math. Soc. 12(3), 361–370 (1975)
Hyland, M., Nagayama, M., Power, J., Rosolini, G.: A category theoretic formulation for Engeler-style models of the untyped λ-calculus. Electronic notes in theoretical computer science 161, 43–57 (2006)
Hyland, M., Ong, C.-H.L.: On full abstraction for PCF: I. Models, observables and the full abstraction problem, II. Dialogue games and innocent strategies, III. A fully abstract and universal game model. Inf. and Comp. 163, 285–408 (2000)
Ker, A.D., Nickau, H., Ong, C.-H.L.: A universal innocent game model for the Boehm tree lambda theory. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 405–419. Springer, Heidelberg (1999)
Kerth, R.: On the construction of stable models of λ-calculus. Theoretical Computer Science 269, 23–46 (2001)
Koymans, C.P.J.: Models of the lambda calculus. Information and Control 52(3), 306–332 (1982)
Lambek, J.: From lambda calculus to Cartesian closed categories. In: Seldin, J.P., Hindley, J. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, Academic Press, London (1980)
Lambek, J., Scott, P.J.: Introduction to Higher Order Categorical Logic. The Journal of Symbolic Logic 54(3) (1989)
Plotkin, G.D.: The λ-calculus is ω-incomplete. J. Symb. Log. 39(2), 313–317 (1974)
Plotkin, G.D.: T ω as a Universal Domain. J. Comput. System Sci. 17, 209–236 (1978)
Scott, D.S.: Continuous lattices. In: Toposes, Algebraic geometry and Logic. LNM, vol. 274, Springer, Heidelberg (1972)
Selinger, P.: The lambda calculus is algebraic. J. Funct. Program. 12(6), 549–566 (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bucciarelli, A., Ehrhard, T., Manzonetto, G. (2007). Not Enough Points Is Enough. In: Duparc, J., Henzinger, T.A. (eds) Computer Science Logic. CSL 2007. Lecture Notes in Computer Science, vol 4646. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74915-8_24
Download citation
DOI: https://doi.org/10.1007/978-3-540-74915-8_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74914-1
Online ISBN: 978-3-540-74915-8
eBook Packages: Computer ScienceComputer Science (R0)