Skip to main content

Propositional Logic for Circuit Classes

  • Conference paper
Computer Science Logic (CSL 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4646))

Included in the following conference series:

  • 767 Accesses

Abstract

By introducing a parallel extension rule that is aware of independence of the introduced extension variables, a calculus for quantified propositional logic is obtained where heights of derivations correspond to heights of appropriate circuits. Adding an uninterpreted predicate on bit-strings (analog to an oracle in relativised complexity classes) this statement can be made precise in the sense that the height of the most shallow proof that a circuit can be evaluated is, up to an additive constant, the height of that circuit.

The main tool for showing lower bounds on proof heights is a variant of an iteration principle studied by Takeuti. This reformulation might be of independent interest, as it allows for polynomial size formulae in the relativised language that require proofs of exponential height.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckmann, A.: Dynamic ordinal analysis. Archive for Mathematical Logic 42, 303–334 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Buss, S.R., Krajíček, J.: An application of boolean complexity to separation problems in bounded arithmetic. Proceedings of the London Mathematical Society 69(3), 1–27 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Clote, P., Takeuti, G.: First order bounded arithmetic and small Boolean circuit complexity classes. In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, Birkhäuser, Boston, MA. Progr. Comput. Sci. Appl. Logic, vol. 13, pp. 154–218 (1995)

    Google Scholar 

  4. Cook, S.A.: Theories for complexity classes and their propositional translations. In Krajíček, J. (ed.) Complexity of computations and proofs, Quaderni die Matematica, pp. 175–227. Dipartimento di Matematica, Seconda Universitá degli Studi di Napoli (2003)

    Google Scholar 

  5. Cook, S.A., Morioka, T.: Quantified propositional calculus and a second-order theory for NC 1. Arch. Math. Logic 44(6), 711–749 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cook, S.A., Nguyen, P.: Foundations of proof complexity: Bounded arithmetic and propositional translations. draft of a book, available at http://www.cs.toronto.edu/~sacook/csc2429h/book/

  7. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. The Journal of Symbolic Logic 44(1) (1979)

    Google Scholar 

  8. Krajíček, J.: Lower bounds to the size of constant-depth propositional proofs. The Journal of Symbolic Logic 59(1), 73–86 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Krajíček, J., Pudlák, P.: Quantified propositional calculi and fragments of bounded arithmetic. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 36, 29–46 (1990)

    Article  MATH  Google Scholar 

  10. Perron, S.: A propositional proof system for log space. In: Ong, C.-H.L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 509–524. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Pohlers, W.: Proof theory. An introduction, Lecture Notes in Mathematics, vol. 1407, Springer, Heidelberg (1989)

    Google Scholar 

  12. Skelley, A.: Propositional PSPACE reasoning with Boolean programs versus quantified Boolean formulas. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1163–1175. Springer, Heidelberg (2004)

    Google Scholar 

  13. Tait, W.W.: Normal derivability in classical logic. In: Barwise, J. (ed.) The Syntax and Semantics of Infinitatry Languages. Lecture Notes in Mathematics, vol. 72, pp. 204–236. Springer, Heidelberg (1968)

    Chapter  Google Scholar 

  14. Takeuti, G.: Separations of theories in weak bounded arithmetic. Annals of Pure and Applied Logic 71, 47–67 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Wilson, C.B.: A measure of relativized space which is faithful with respect to depth. Journal of Computer and System Sciences 36(3), 303–312 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Duparc Thomas A. Henzinger

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aehlig, K., Beckmann, A. (2007). Propositional Logic for Circuit Classes. In: Duparc, J., Henzinger, T.A. (eds) Computer Science Logic. CSL 2007. Lecture Notes in Computer Science, vol 4646. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74915-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74915-8_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74914-1

  • Online ISBN: 978-3-540-74915-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics