Abstract
Tracking 3D objects from 2D image data often leads to jittery tracking results. In general, unsmooth motion is a sign of tracking errors, which, in the worst case, can cause the tracker to loose the tracked object. A straightforward remedy is to demand temporal consistency and to smooth the result. This is often done in form of a post-processing. In this paper, we present an approach for online smoothing in the scope of 3D human motion tracking. To this end, we extend an energy functional by a term that penalizes deviations from smoothness. It is shown experimentally that such online smoothing on pose parameters and joint angles leads to improved results and can even succeed in cases, where tracking without temporal consistency assumptions fails completely.
This work has been supported by the Max-Planck Center for Visual Computing and Communication.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bray, M., Kohli, P., Torr, P.: Posecut: Simultaneous segmentation and 3d pose estimation of humand using dynamic graph-cuts. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 642–655. Springer, Heidelberg (2006)
Bregler, C., Malik, J., Pullen, K.: Twist based acquisition and tracking of animal and human kinematics. International Journal of Computer Vision 56(3), 179–194 (2004)
Bruderlin, A., Williams, L.: Motion signal processing. In: SIGGRAPH 1995: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, New York, NY, USA, pp. 97–104. ACM Press, New York (1995)
Belta, C., Kumar, V.: On the computation of rigid body motion. Electronic Journal of Computational Kinematics 1(1) (2002)
Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)
Chaudhry, F.S., Handscomb, D.C.: Smooth motion of a rigid body in 2d and 3d. In: IV ’97: Proceedings of the IEEE Conference on Information Visualisation, Washington, DC, USA, p. 205. IEEE Computer Society Press, Los Alamitos (1997)
Deutscher, J., Reid, I.: Articulated body motion capture by stochastic search. Int. J. of Computer Vision 61(2), 185–205 (2005)
Drummond, T.W., Cipolla, R.: Real-time tracking of complex structures for visual servoing. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) Vision Algorithms: Theory and Practice. LNCS, vol. 1883, pp. 69–84. Springer, Heidelberg (2000)
Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104(2), 90–126 (2006)
Moeslund, T.B., Granum, E.: A survey of computer vision based human motion capture. Computer Vision and Image Understanding 81(3), 231–268 (2001)
Murray, R.M., Li, Z., Sastry, S.S.: Mathematical Introduction to Robotic Manipulation. CRC Press, Baton Rouge (1994)
Park, F., Ravani, B.: Bezier curves on riemannian manifolds and lie groups with kinematics applications. Journal of Mechanical Design 117(1), 36–40 (1995)
Rosenhahn, B., Brox, T., Kersting, U., Smith, A., Gurney, J., Klette, R.: A system for marker-less motion capture. Künstliche Intelligenz (1), 45–51 (2006)
Rosenhahn, B., Brox, T., Weickert, J.: Three-dimensional shape knowledge for joint image segmentation and pose tracking. International Journal of Computer Vision 73(3), 243–262 (2007)
Shoemake, K.: Animating rotation with quaternion curves. In: SIGGRAPH 1985: Proceedings of the 12th annual conference on Computer graphics and interactive techniques, New York, NY, USA, pp. 245–254. ACM Press, New York (1985)
Sul, C., Jung, S., Wohn, K.: Synthesis of human motion using kalman filter. In: Magnenat-Thalmann, N., Thalmann, D. (eds.) CAPTECH 1998. LNCS (LNAI), vol. 1537, pp. 100–112. Springer, Heidelberg (1998)
Ude, A., Atkeson, C.G.: Online tracking and mimicking of human movements by a humanoid robot. Journal of Advanced Robotics 17(2), 165–178 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rosenhahn, B., Brox, T., Cremers, D., Seidel, HP. (2007). Online Smoothing for Markerless Motion Capture. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds) Pattern Recognition. DAGM 2007. Lecture Notes in Computer Science, vol 4713. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74936-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-540-74936-3_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74933-2
Online ISBN: 978-3-540-74936-3
eBook Packages: Computer ScienceComputer Science (R0)