Skip to main content

Semi-supervised Tumor Detection in Magnetic Resonance Spectroscopic Images Using Discriminative Random Fields

  • Conference paper
Pattern Recognition (DAGM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4713))

Included in the following conference series:

Abstract

Magnetic resonance spectral images provide information on metabolic processes and can thus be used for in vivo tumor diagnosis. However, each single spectrum has to be checked manually for tumorous changes by an expert, which is only possible for very few spectra in clinical routine. We propose a semi-supervised procedure which requires only very few labeled spectra as input and can hence adapt to patient and acquisition specific variations. The method employs a discriminative random field with highly flexible single-side and parameter-free pair potentials to model spatial correlation of spectra. Classification is performed according to the label set that minimizes the energy of this random field. An iterative procedure alternates a parameter update of the random field using a kernel density estimation with a classification by means of the GraphCut algorithm. The method is compared to a single spectrum approach on simulated and clinical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hagberg, G.: From magnetic resonance spectroscopy to classification of tumors. a review of pattern recognition methods. NMR in Biomedicine 11(45), 148–156 (1998)

    Article  Google Scholar 

  2. Devos, A., Lukas, L., Suykens, J., Vanhamme, L., Tate, A., Howe, F., Majós, C., Moreno-Torres, A., van der Graaf, M., Arús, C., Van Huffel, S.: Classification of brain tumours using short echo time 1H MR spectra. Journal of Magnetic Resonance 170(1), 164–175 (2004)

    Article  Google Scholar 

  3. Menze, B.H., Lichy, M.P., Bachert, P., Kelm, B.M., Schlemmer, H.P., Hamprecht, F.A.: Optimal classification of long echo in vivo magnetic resonance spectra in the detection of recurrent brain tumors. NMR in Biomedicine 19(5), 599–609 (2006)

    Article  Google Scholar 

  4. Kelm, B.M., Menze, B.H., Zechmann, C.M., Baudendistel, K.T., Hamprecht, F.A.: Automated estimation of tumor probability in prostate MRSI: Pattern recognition vs. quantification. Magnetic Resonance in Medicine 57, 150–159 (2007)

    Article  Google Scholar 

  5. Lukas, L., Devos, A., Suykens, J., Vanhamme, L., Howe, F., Majós, C., Moreno-Torres, A., van der Graaf, M., Tate, A., Arús, C., Van Huffel, S.: Brain tumor classification based on long echo proton MRS signals. Artificial Intelligence in Medicine 31(1), 73–89 (2004)

    Article  Google Scholar 

  6. Tate, A., Majós, C., Moreno, A., Howe, F., Griffiths, J., Arús, C.: Automated classification of short echo time in in vivo 1H brain tumor spectra: A multicenter study. Magnetic Resonance in Medicine 49(1), 29–36 (2003)

    Article  Google Scholar 

  7. Silverman, B., Silverman, B.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, New York (1986)

    MATH  Google Scholar 

  8. Besag, J.: Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society 36, 192–236 (1974)

    MATH  MathSciNet  Google Scholar 

  9. Ng, A., Jordan, M.: On discriminative vs. generative classifiers: A comparison of logistic regression and naïve Bayes. In: Proceedings of the 14th Conference on Advances in Neural Information Processing, vol. 14 (2001)

    Google Scholar 

  10. Kumar, S., Hebert, M.: Discriminative random fields. International Journal of Computer Vision 68(2), 179–201 (2006)

    Article  Google Scholar 

  11. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. 18th International Conf. on Machine Learning, pp. 282–289. Morgan Kaufmann, San Francisco, CA (2001)

    Google Scholar 

  12. Li, S.Z.: Markov random field modeling in computer vision. Springer, London, UK (1995)

    Google Scholar 

  13. Perona, P., Malik, J.: Scale-Space and edge detection using anistropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)

    Article  Google Scholar 

  14. Boykov, Y., Funka-Lea, G.: Graph Cuts and Efficient N-D Image Segmentation. International Journal of Computer Vision 70(2), 109–131 (2006)

    Article  Google Scholar 

  15. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  16. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 147–159 (2004)

    Article  Google Scholar 

  17. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  18. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likehood from incomplete data via the EM-algorithm. Journal of the Royal Statistical Society, Series B 39(1), 1–22 (1977)

    MATH  MathSciNet  Google Scholar 

  19. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  20. Robert, C., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, Secaucus, NJ, USA (2004)

    MATH  Google Scholar 

  21. Kelm, B.M., Hamprecht, F.A.: Trading resolution against noise in NMR spectroscopic imaging using conditional random fields. Technical report, IWR, University of Heidelberg (2007)

    Google Scholar 

  22. Menze, B.H., Kelm, B.M., Weber, M.A., Bachert, P., Hamprecht, F.A.: Mimicking the human expert: a pattern recognition approach to score the data quality in MRSI. Technical report, Interdisciplinary Center for Scientific Computing, University of Heidelberg (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fred A. Hamprecht Christoph Schnörr Bernd Jähne

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Görlitz, L., Menze, B.H., Weber, M.A., Kelm, B.M., Hamprecht, F.A. (2007). Semi-supervised Tumor Detection in Magnetic Resonance Spectroscopic Images Using Discriminative Random Fields. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds) Pattern Recognition. DAGM 2007. Lecture Notes in Computer Science, vol 4713. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74936-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74936-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74933-2

  • Online ISBN: 978-3-540-74936-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics