Abstract
This paper presents a reliable coin recognition system that is based on a registration approach. To optimally align two coins we search for a rotation in order to reach a maximal number of colinear gradient vectors. The gradient magnitude is completely neglected. After a quantization of the gradient directions the computation of the induced similarity measure can be done efficiently in the Fourier domain. The classification is realized with a simple nearest neighbor classification scheme followed by several rejection criteria to meet the demand of a low false positive rate.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Nölle, M., Penz, H., Rubik, M., Mayer, K., Holländer, I., Granec, R.: Dagobert - A new Coin Recognition and Sorting System. In: Proceedings of the 7th Internation Conference on Digital Image Computing - Techniques and Applications (DICTA 2003), Sydney, Australia (2003)
Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recognition, 13–2 (1981)
Schulz, J., Schmidt, T., Ronneberger, O., Burkhardt, H.: Fast Scalar and Vectorial Grayscale based Invariant Features for 3D Cell Nuclei Localization and Classification. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) Pattern Recognition. LNCS, vol. 4174, Springer, Heidelberg (2006)
Siggelkow, S., Burkhardt, H.: Improvement of Histogram-Based Image Retrieval and Classification. In: Proceedings of the International Conference on Pattern Recognition, vol. 3, pp. 367–370 (2002)
Haber, Ramoser, Mayer, Penz, Rubik: Classification of coins using an eigenspace approach. Pattern Recognition Letters 26(1), 61–75 (2005)
Fukumi, M., Omatu, S., Takeda, F., Kosaka, T.: Rotation-invariant neural pattern recognition system with application to coin recognition. IEEE Transactions in Neural Networks 3(2), 272–279 (1992)
Adameck, M., Hossfeld, M., Eich, M.: Three color selective stereo gradient method for fast topographic recognition of metallic surfaces. In: Proceedings of Electronic Imaging, Science and Technology, Machine Vision Application in Industrial Inspection XI, vol. SPIE 5011, pp. 128–139 (2003)
van der Maaten, L., Boon, P.: COIN-O-MATIC: A fast system for reliable coin classification. In: MUSCLE CIS Coin Recognition Competition Workshop (2006), http://muscle.prip.tuwien.ac.at
Nölle, M., Rubik, M., Hanbury, A.: Results of the MUSCLE CIS Coin Competition 2006. In: MUSCLE CIS Coin Recognition Competition Workshop (2006), http://muscle.prip.tuwien.ac.at
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Reisert, M., Ronneberger, O., Burkhardt, H. (2007). A Fast and Reliable Coin Recognition System. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds) Pattern Recognition. DAGM 2007. Lecture Notes in Computer Science, vol 4713. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74936-3_42
Download citation
DOI: https://doi.org/10.1007/978-3-540-74936-3_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74933-2
Online ISBN: 978-3-540-74936-3
eBook Packages: Computer ScienceComputer Science (R0)