Skip to main content

Coordinating Competitive Agents in Dynamic Airport Resource Scheduling

  • Conference paper
Multiagent System Technologies (MATES 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4687))

Included in the following conference series:

  • 607 Accesses

Abstract

In real-life multi-agent planning problems, long-term plans will often be invalidated by changes in the environment during or after the planning process. When this happens, short-term operational planning and scheduling methods have to be applied in order to deal with these changed situations. In addition to the dynamic environment, in such planning systems we also have to be aware of sometimes conflicting interests of different parties, which render a centralized approach undesirable. In this paper we investigate two agent-based scheduling architectures where stakeholders are modelled as autonomous agents. We discuss this approach in the context of an interesting airport planning problem: the planning and scheduling of deicing and anti-icing activities. To coordinate the competition between agents over scarce resources, we have developed two mechanisms: one mechanism based on decommitment penalties, and one based on a more traditional (Vickrey) auction. Experiments show that the auction-based mechanism best respects the preferences of the individual agents, whereas the decommitment mechanism ensures a fairer distribution of delay over the agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Smith, D.E., Frank, J., Jónsson, A.K.: Bridging the gap between planning and scheduling. Knowl. Eng. Rev. 15(1), 47–83 (2000)

    Article  Google Scholar 

  2. Nisan, N., Ronen, A.: Algorithmic mechanism design. In: STOC 1999. Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, pp. 129–140. ACM Press, New York (1999)

    Chapter  Google Scholar 

  3. Andelman, N., Azar, Y., Sorani, M.: Truthful approximation mechanisms for scheduling selfish related machines. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 69–82. Springer, Heidelberg (2005)

    Google Scholar 

  4. Auletta, V., Prisco, R.D., Penna, P., Persiano, G.: Deterministic truthful approximation mechanisms for scheduling related machines. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 608–619. Springer, Heidelberg (2004)

    Google Scholar 

  5. Kovács, A.: Fast monotone 3-approximation algorithm for scheduling related machines. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 616–627. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Angel, E., Bampis, E., Pascual, F.: Truthful algorithms for scheduling selfish tasks on parallel machines. Theor. Comput. Sci. 369(1-3), 157–168 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Immorlica, N., Li, L., Mirrokni, V.S., Schulz, A.: Coordination mechanisms for selfish scheduling. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp. 55–69. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Vermeulen, I., Bohte, S., Somefun, D., Poutré, J.L.: Improving patient schedules by multi-agent pareto appointment exchanging. In: CEC/EEE 2006. Proceedings of 2006 IEEE International Conference on E-Commerce Technology, San Francisco, California, p. 9 (June 26-29, 2006)

    Google Scholar 

  9. Paulussen, T.O., Jennings, N.R., Decker, K.S., Heinzl, A.: Distributed patient scheduling in hospitals. In: IJCIA 2003, pp. 1224–1232. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  10. Attanasio, A., Ghiani, G., Grandinetti, L., Guerriero, F.: Auction algorithms for decentralized parallel machine scheduling. Parallel Comput. 32(9), 701–709 (2006)

    Article  MathSciNet  Google Scholar 

  11. Lewin, R.: Embracing Complexity: Exploring the Application of Complex Adaptive Systems to Business. Ernst & Young (1996)

    Google Scholar 

  12. Parkes, D.C., Ungar, L.H.: An auction-based method for decentralized train scheduling. In: Proceedings of the Fifth International Conference on Autonomous Agents, Montreal, Canada, pp. 43–50. ACM Press, New York (2001)

    Chapter  Google Scholar 

  13. ’t Hoen, P.J., Poutre, J.A.L.: A decommitment strategy in a competitive multi-agent transportation setting. In: AAMAS 2003, pp. 1010–1011. ACM Press, New York (2003)

    Chapter  Google Scholar 

  14. Sandholm, T., Lesser, V.: Leveled commitment contracts and strategic breach. Games and Economic Behaviour 25, 212–270 (2001)

    Article  MathSciNet  Google Scholar 

  15. Collins, J., Tsvetovas, M., Sundareswara, R., van Tonder, J., Gini, M., Mobasher, B.: Evaluating risk: flexibility and feasibility in multi-agent contracting. In: Agents 1999. Proceedings of the Third International Conference on Autonomous Agents, Seattle, WA, USA, pp. 350–351. ACM Press, Seattle, WA (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Paolo Petta Jörg P. Müller Matthias Klusch Michael Georgeff

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mao, X., ter Mors, A., Roos, N., Witteveen, C. (2007). Coordinating Competitive Agents in Dynamic Airport Resource Scheduling. In: Petta, P., Müller, J.P., Klusch, M., Georgeff, M. (eds) Multiagent System Technologies. MATES 2007. Lecture Notes in Computer Science(), vol 4687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74949-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74949-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74948-6

  • Online ISBN: 978-3-540-74949-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics