Abstract
Many intron positions are conserved in varying subsets of eukaryotic genomes and, consequently, comprise a potentially informative class of phylogenetic characters. Roy and Gilbert developed a method of phylogenetic reconstruction using the patterns of intron presence-absence in eukaryotic genes and, applying this method to the analysis of animal phylogeny, obtained support for an Ecdysozoa clade ([1]). The critical assumption in the method was the independence of the rates of intron loss in different branches of the phylogenetic. Here, this assumption is refuted by showing that the branch-specific intron loss rates are strongly correlated. We show that different tree topologies are obtained, in each case with a significant statistical support, when different subsets of intron positions are analyzed. The analysis of the conserved intron positions supports the Coelomata topology, i.e., a clade comprised of arthropods and chordates, whereas the analysis of more variable intron positions favors the Ecdysozoa topology, i.e., a clade of arthropods and nematodes. We show, however, that the support for Ecdysozoa is fully explained by parallel loss of introns in nematodes and arthropods, a factor that does not contribute to the analysis of the conserved introns. The developed procedure for the identification and analysis of conserved introns and other characters with minimal or no homoplasy is expected to be useful for resolving many hard phylogenetic problems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Roy, S.W., Gilbert, W.: Resolution of a deep animal divergence by the pattern of intron conservation. Proc. Natl. Acad. Sci. U S A 102, 4403–4408 (2005)
Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Sunderland, MA (2004)
Snel, B., Bork, P., Huynen, M.A.: Genome phylogeny based on gene content. Nat. Genet. 21, 108–110 (1999)
Wolf, Y.I., Rogozin, I.B., Grishin, N.V., Tatusov, R.L., Koonin, E.V.: Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evolutionary Biology. 1 (2001)
Wolf, Y.I., Rogozin, I.B., Grishin, N.V., Koonin, E.V.: Genome trees and the tree of life. Trends Genet. 18, 472–479 (2002)
Snel, B., Huynen, M.A., Dutilh, B.E.: Genome trees and the nature of genome evolution. Annu. Rev. Microbiol. 59, 191–209 (2005)
Rokas, A., Holland, P.W.: Rare genomic changes as a tool for phylogenetics. Trends in Ecology and Evolution 15, 454–459 (2000)
Nei, M., Kumar, S.: Molecular Evolution and Phylogenetics. Oxford Univ, Oxford (2001)
Delsuc, F., Brinkmann, H., Philippe, H.: Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6, 361–375 (2005)
Boore, J.L.: The use of genome-level characters for phylogenetic reconstruction. Trends Ecol. Evol. 21, 439–446 (2006)
Fedorov, A., Merican, A.F., Gilbert, W.: Large-scale comparison of intron positions among animal, plant, and fungal genes. Proc. Natl. Acad. Sci. U S A 99, 16128–16133 (2002)
Rogozin, I.B., Wolf, Y.I., Sorokin, A.V., Mirkin, B.G., Koonin, E.V.: Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr. Biol. 13, 1512–1517 (2003)
Sverdlov, A.V., Rogozin, I.B., Babenko, V.N., Koonin, E.V.: Conservation versus parallel gains in intron evolution. Nucleic Acids Res. 33, 1741–1748 (2005)
Brusca, R.C., Brusca, G.J.: Invertebrates. Sinauer Associates, Sunderland, Mass (1990)
Raff, R.A: The Shape of Life: Genes, Development, and the Evolution of Animal Form. University of Chicago Press, Chicago, IL (1996)
Haeckel, E.: Generelle Morphologie der Organismen. G.Reimer, Berlin (1866)
Field, K.G., Olsen, G.J., Lane, D.J., Giovannoni, S.J., Ghiselin, M.T., Raff, E.C., Pace, N.R., Raff, R.A.: Molecular phylogeny of the animal kingdom. Science 239, 748–753 (1988)
Turbeville, J.M., Pfeifer, D.M., Field, K.G., Raff, R.A.: The phylogenetic status of arthropods, as inferred from 18s rrna sequences. Mol. Biol. Evol. 8, 669–686 (1991)
Aguinaldo, A.M., Turbeville, J.M., Linford, L.S., Rivera, M.C., Garey, J.R., Raff, R.A., Lake, J.A.: Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387, 489–493 (1997)
Telford, M.J., Copley, R.R.: Animal phylogeny: fatal attraction. Curr. Biol. 15, 296–299 (2005)
Felsenstein, J.: Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27, 401–410 (1978)
Reyes, A., Pesole, G., Saccone, C.: Long-branch attraction pheonomenon and the impact of among-site rate variation on rodent phylogeny. Gene 259, 177–187 (2000)
Philippe, H., Lartillot, N., Brinkmann, H.: Multigene analyses of bilaterian animals corroborate the monophyly of ecdysozoa, lophotrochozoa, and protostomia. Mol. Biol. Evol. 22, 1246–1253 (2005)
Giribet, G., Distel, D.L., Polz, M., Sterrer, W., Wheeler, W.C.: Triploblastic relationships with emphasis on the acoelomates and the position of gnathostomulida, cycliophora, plathelminthes, and chaetognatha: a combined approach of 18s rdna sequences and morphology. Syst. Biol. 49, 539–562 (2000)
Peterson, K.J., Eernisse, D.J.: Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18s rdna gene sequences. Evol. Dev. 3, 170–205 (2001)
Mallatt, J., Winchell, C.J.: Testing the new animal phylogeny: first use of combined large-subunit and small-subunit rrna gene sequences to classify the protostomes. Mol. Biol. Evol. 19, 289–301 (2002)
de Rosa, R., Grenier, J.K., Andreeva, T., Cook, C.E., Adoutte, A., Akam, M., Carroll, S.B., Balavoine, G.: Hox genes in brachiopods and priapulids and protostome evolution. Nature 399, 772–776 (1999)
Manuel, M., Kruse, M., Muller, W.E., Parco, Y.L.: The comparison of beta-thymosin homologues among metazoa supports an arthropod-nematode clade. J. Mol. Evol. 51, 378–381 (2000)
Adoutte, A., Balavoine, G., Lartillot, N., Lespinet, O., Prud’homme, B., de Rosa, R.: The new animal phylogeny: reliability and implications. Proc. Natl. Acad. Sci. U S A 97, 4453–4456 (2000)
Valentine, J.W., Collins, A.G.: The significance of moulting in ecdysozoan evolution. Evol. Dev. 2, 152–156 (2000)
Collins, A.G., Valentine, J.W.: Defining phyla: evolutionary pathways to metazoan body plans. Evol. Dev. 3, 432–442 (2001)
Telford, M.J., Budd, G.E.: The place of phylogeny and cladistics in evo-devo research. Int. J. Dev. Biol. 47, 479–490 (2003)
Mushegian, A.R., Garey, J.R., Martin, J., Liu, L.X.: Large-scale taxonomic profiling of eukaryotic model organisms: a comparison of orthologous proteins encoded by the human, fly, nematode, and yeast genomes. Genome Res. 8, 590–598 (1998)
Blair, J.E., Ikeo, K., Gojobori, T., Hedges, S.B.: The evolutionary position of nematodes. BMC Evol. Biol. 2(7) (2002)
Wolf, Y.I., Rogozin, I.B., Koonin, E.V.: Coelomata and not ecdysozoa: evidence from genome-wide phylogenetic analysis. Genome Res. 14, 29–36 (2004)
Stuart, G.W., Berry, M.W.: An svd-based comparison of nine whole eukaryotic genomes supports a coelomate rather than ecdysozoan lineage. BMC Bioinformatics 5, 204 (2004)
Philip, G.K., Creevey, C.J., McInerney, J.O.: The opisthokonta and the ecdysozoa may not be clades: stronger support for the grouping of plant and animal than for animal and fungi and stronger support for the coelomata than ecdysozoa. Mol. Biol. Evol. 22, 1175–1184 (2005)
Zdobnov, E.M., von Mering, C., Letunic, I., Bork, P.: Consistency of genome-based methods in measuring metazoan evolution. FEBS Lett. 579, 3355–3361 (2005)
Ciccarelli, F.D., Doerks, T., von Mering, C., Creevey, C.J., Snel, B., Bork, P.: Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006)
Telford, M.J.: The multimeric beta-thymosin found in nematodes and arthropods is not a synapomorphy of the ecdysozoa. Evol. Dev. 6, 90–94 (2004)
Brinkmann, H., van der Giezen, M., Zhou, Y., de Raucourt, G.P., Philippe, H.: An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics. Syst. Biol. 54, 743–757 (2005)
Dopazo, H., Dopazo, J.: Genome-scale evidence of the nematode-arthropod clade. Genome Biol 6(5), R41 (2005)
Copley, R.R., Aloy, P., Russell, R.B., Telford, M.J.: Systematic searches for molecular synapomorphies in model metazoan genomes give some support for ecdysozoa after accounting for the idiosyncrasies of caenorhabditis elegans. Evol. Dev. 6, 164–169 (2004)
Lartillot, N., Brinkmann, H., Philippe, H.: Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol. Biol. Suppl. 1 7, S4 (2007)
Hedges, S.B.: The origin and evolution of model organisms. Nat. Rev. Genet. 3, 838–849 (2002)
Telford, M.J.: Animal phylogeny: back to the coelomata? Curr. Biol. 14, R274–276 (2004)
Jones, M., Blaxter, M.: Evolutionary biology: animal roots and shoots. Nature 434, 1076–1077 (2005)
Rogozin, I.B., Wolf, Y.I., Carmel, L., Koonin, E.V.: Ecdysozoan clade rejected by genome-wide analysis of rare amino acid replacements. Mol. Biol. Evol. 24, 1080–1090 (2007)
Przytycka, T.M.: An important connection between network motifs and parsimony models. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 321–335. Springer, Heidelberg (2006)
Nguyen, H.D, Yoshihama, M., Kenmochi, N.: New maximum likelihood estimators for eukaryotic intron evolution. PLoS Comput. Biol. 1(7), 79 (2005)
Farris, J.S.: Phylogenetic analysis under dollo’s law. Syst. Zool. 26, 77–88 (1977)
Rogozin, I.B., Babenko, V.N., Wolf, Y.I., Koonin, E.V.: Dollo parsimony and reconstruction of genome evolution. In: Albert, V.A. (ed.) Parsimony, Phylogeny, and Genomics, pp. 190–200. Oxford University Press, Oxford (2005)
Felsenstein, J.: Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol 266, 418–427 (1996)
Prager, E.M., Wilson, A.C.: Ancient origin of lactalbumin from lysozyme: analysis of dna and amino acid sequences. J. Mol. Evol. 27, 326–335 (1988)
Fedorov, A., Roy, S., Fedorova, L., Gilbert, W.: Mystery of intron gain. Genome Res. 13, 2236–2241 (2003)
Roy, S.W., Penny, D.: Smoke without fire: most reported cases of intron gain in nematodes instead reflect intron losses. Mol. Biol. Evol. 23, 2259–2262 (2006)
Carmel, L., Wolf, Y.I., Rogozin, I.B., Koonin, E.V.: Three distinct modes of intron dynamics in the evolution of eukaryotes. Genome Res. (in press, 2007)
Brinkmann, H., Philippe, H.: Archaea sister group of bacteria? indications from tree reconstruction artifacts in ancient phylogenies. Mol. Biol. Evol. 16, 817–825 (1999)
Philippe, H., Germot, A., Moreira, D.: The new phylogeny of eukaryotes. Curr. Opin. Genet. Dev. 10, 596–601 (2000)
Brochier, C., Philippe, H.: Phylogeny: a non-hyperthermophilic ancestor for bacteria. Nature 417, 244 (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zheng, J., Rogozin, I.B., Koonin, E.V., Przytycka, T.M. (2007). A Rigorous Analysis of the Pattern of Intron Conservation Supports the Coelomata Clade of Animals. In: Tesler, G., Durand, D. (eds) Comparative Genomics. RECOMB-CG 2007. Lecture Notes in Computer Science(), vol 4751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74960-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-74960-8_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74959-2
Online ISBN: 978-3-540-74960-8
eBook Packages: Computer ScienceComputer Science (R0)