Skip to main content

Hybrid Multi Agent-Neural Network Intrusion Detection with Mobile Visualization

  • Chapter
Innovations in Hybrid Intelligent Systems

Part of the book series: Advances in Soft Computing ((AINSC,volume 44))

  • 1444 Accesses

Abstract

A multiagent system that incorporates an Artificial Neural Networks based Intrusion Detection System (IDS) has been defined to guaranty an efficient computer network security architecture. The proposed system facilitates the intrusion detection in dynamic networks. This paper presents the structure of the Mobile Visualization Connectionist Agent-Based IDS, more flexible and adaptable. The proposed improvement of the system in this paper includes deliberative agents that use the artificial neural network to identify intrusions in computer networks. The agent based system has been probed through anomalous situations related to the Simple Network Management Protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Spafford, E.H., Zamboni, D.: Intrusion Detection Using Autonomous Agents. Computer Networks: The Int. Journal of Computer and Telecommunications Networking 34(4), 547–570 (2000)

    Google Scholar 

  2. Hegazy, I.M., Al-Arif, T., Fayed, Z.T., Faheem, H.M.: A Multi-agent Based System for Intrusion Detection. IEEE Potentials 22(4), 28–31 (2003)

    Article  Google Scholar 

  3. Dasgupta, D., Gonzalez, F., Yallapu, K., Gomez, J., Yarramsettii, R.: CIDS: An agentbased intrusion detection system. Computers & Security 24(5), 387–398 (2005)

    Article  Google Scholar 

  4. Wang, H.Q., Wang, Z.Q., Zhao, Q., Wang, G.F., Zheng, R.J., Liu, D.X.: Mobile Agents for Network Intrusion Resistance. In: APWeb 2006. LNCS, vol. 3842, pp. 965–970. Springer, Heidelberg (2006)

    Google Scholar 

  5. Deeter, K., Singh, K., Wilson, S., Filipozzi, L., Vuong, S.: APHIDS: A Mobile Agent-Based Programmable Hybrid Intrusion Detection System. In: Mobility Aware Technologies and Applications. LNCS, vol. 3284, pp. 244–253. Springer, Heidelberg (2004)

    Google Scholar 

  6. Laskov, P., Dussel, P., Schafer, C., Rieck, K.: Learning Intrusion Detection: Supervised or Unsupervised? In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 50–57. Springer, Heidelberg (2005)

    Google Scholar 

  7. Liao, Y.H., Vemuri, V.R.: Use of K-Nearest Neighbor Classifier for Intrusion Detection. Computers & Security 21(5), 439–448 (2002)

    Article  Google Scholar 

  8. Sarasamma, S.T., Zhu, Q.M.A., Huff, J.: Hierarchical Kohonenen Net for Anomaly Detection in Network Security. IEEE Transactions on Systems Man and Cybernetics 35(2), 302–312 (2005)

    Article  Google Scholar 

  9. Zanero, S., Savaresi, S.: Unsupervised Learning Techniques for an Intrusion Detection System. In: Proc. of the ACM Symposium on Applied Computing. pp. 412–419 (2004)

    Google Scholar 

  10. Corchado, E., Herrero, A., Sáiz, J.M.: Detecting Compounded Anomalous SNMP Situations Using Cooperative Unsupervised Pattern Recognition. In: Duch, W., Kacprzyk, J., Oja, E., Zadrozny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 905–910. Springer, Heidelberg (2005)

    Google Scholar 

  11. Sindhu, S.S.S., Ramasubramanian, P., Kannan, A.: Intelligent Multi-agent Based Genetic Fuzzy Ensemble Network Intrusion Detection. In: Neural Information Processing. LNCS, pp. 983–988. Springer, Heidelberg (2004)

    Google Scholar 

  12. Middlemiss, M., Dick, G.: Feature Selection of Intrusion Detection Data Using a Hybrid Genetic Algorithm/KNN Approach. In: Design and application of hybrid intelligent systems. IOS Press. 519–527 (2003)

    Google Scholar 

  13. Kholfi, S., Habib, M., Aljahdali, S.: Best Hybrid Classifiers for Intrusion Detection. Journal of Computational Methods in Science and Engineering 6(2), 299–307 (2006)

    Google Scholar 

  14. Carrascosa, C., Bajo, J., Julián, V., Corchado, J.M., Botti, V.: Hybrid Multi-agent Architecture as a Real-Time Problem-Solving Model. Expert Systems with Applications: An International Journal 34(1), 2–17 (2008)

    Article  Google Scholar 

  15. Corchado, E., Herrero, A., Saiz, J.M.: Testing CAB-IDS through Mutations: on the Identification of Network Scans. In: Proc. of the Int. Conf. on Knowledge-Based and Intelligent Information & Engineering Systems. LNAI, vol. 4252, pp. 433–441 (2006)

    Article  Google Scholar 

  16. Herrero, A., Corchado, E., Sáiz, J.M.: MOVICAB-IDS: Visual Analysis of Network Traffic Data Streams for Intrusion Detection. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 1424–1433. Springer, Heidelberg (2006)

    Google Scholar 

  17. Corchado, J.M., Laza, R.: Constructing Deliberative Agents with Case-Based Reasoning Technology. International Journal of Intelligent Systems 18(12), 1227–1241 (2003)

    Article  Google Scholar 

  18. Pellicer, M.A., Corchado, J.M.: Development of CBR-BDI Agents. International Journal of Computer Science and Applications 2(1), 25–32 (2005)

    Google Scholar 

  19. Aamodt, A., Plaza, E.: Case-Based Reasoning-Foundational Issues, Methodological Variations, and System Approaches. AI Communications 7(1), 39–59 (1994)

    Google Scholar 

  20. Bratman, M.E.: Intentions, Plans and Practical Reason. Harvard University Press, Cambridge, M.A. (1987)

    Google Scholar 

  21. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing Multiagent Systems: the Gaia Methodology. ACM Transactions on Software Engineering and Methodology 12(3), 317–370 (2003)

    Article  Google Scholar 

  22. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems 3(3), 285–312 (2000)

    Article  Google Scholar 

  23. Bauer, B., Müller, J.P., Odell, J.: Agent UML: A Formalism for Specifying Multiagent Software Systems. International Journal of Software Engineering and Knowledge Engineering 11(3), 1–24 (2001)

    Article  Google Scholar 

  24. Corchado, E., Fyfe, C.: Connectionist Techniques for the Identification and Suppression of Interfering Underlying Factors. Int. Journal of Pattern Recognition and Artificial Intelligence 17(8), 1447–1466 (2003)

    Article  Google Scholar 

  25. Corchado, E., MacDonald, D., Fyfe, C.: Maximum and Minimum Likelihood Hebbian Learning for Exploratory Projection Pursuit. Data Mining and Knowledge Discovery 8(3), 203–225 (2004)

    Article  MathSciNet  Google Scholar 

  26. Friedman, J.H., Tukey, J.W.: A Projection Pursuit Algorithm for Exploratory Data-Analysis. IEEE Transactions on Computers 23(9), 881–890 (1974)

    Article  MATH  Google Scholar 

  27. Seung, H.S., Socci, N.D., Lee, D.: The Rectified Gaussian Distribution. Advances in Neural Information Processing Systems 10, 350–356 (1998)

    Google Scholar 

  28. Herrero, A., Corchado, E., Gastaldo, P., Zunino, R.: A Comparison of Neural Projection Techniques Applied to Intrusion Detection Systems. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds.) IWANN’2007. LNCS, vol. 4507, pp. 1138–1146. Springer, Heidelberg (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herrero, Á., Corchado, E., Pellicer, M.A., Abraham, A. (2007). Hybrid Multi Agent-Neural Network Intrusion Detection with Mobile Visualization. In: Corchado, E., Corchado, J.M., Abraham, A. (eds) Innovations in Hybrid Intelligent Systems. Advances in Soft Computing, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74972-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74972-1_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74971-4

  • Online ISBN: 978-3-540-74972-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics