Skip to main content

Ensemble of Support Vector Machines to Improve the Cancer Class Prediction Based on the Gene Expression Profiles

  • Chapter
Innovations in Hybrid Intelligent Systems

Part of the book series: Advances in Soft Computing ((AINSC,volume 44))

Abstract

DNA microarrays provide rich profiles that are used in cancer prediction considering the gene expression levels across a collection of samples.Support Vector Machines (SVM), have been applied to the classification of cancer samples with encouraging results. However, they are usually based on Euclidean distances that fail to reflect accurately the sample proximities. Besides, SVM classifiers based on non-Euclidean dissimilarities fail to reduce significantly the errors. In this paper, we propose an ensemble of SVM classifiers in order to reduce the errors. The diversity among classifiers is induced considering a set of complementary dissimilarities and kernels. The experimental results suggest that that our algorithm improves classifiers based on a single dissimilarity and a combination strategy such as Bagging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, C. C.: Re-designing Distance Functions and Distance-Based Applications for High Dimensional Applications, in Proc. of the ACM International Conference on Management of Data and Symposium on Principles of Database Systems (SIGMODPODS), vol. 1, March 2001, pp. 13–18.

    Google Scholar 

  2. Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays. Proc. Nat’l Acad Sci USA, 96:6745–6750, 1999.

    Article  Google Scholar 

  3. Bauer, E., Kohavi, R.: An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants, Machine Learning, vol. 36, pp. 105–139, 1999.

    Article  Google Scholar 

  4. Braga-Neto, U., Dougherty, E.: Is Cross-Validation Valid for Small-Sample Microarray Classification? Bioinformatics, vol. 20, no. 3, pp. 374–380, 2004.

    Article  Google Scholar 

  5. Breiman, L.: Bagging predictors, Machine Learning, vol. 24, pp. 123–140, 1996.

    MATH  MathSciNet  Google Scholar 

  6. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge: Cambridge University Press, 2000.

    Google Scholar 

  7. Drãghici, S.: Data Analysis Tools for DNA Microarrays. New York: Chapman & Hall/CRC Press, 2003.

    Google Scholar 

  8. Furey, T., Cristianini, N., Duffy, N., Bednarski, D., Schummer, M., Haussler, D.: Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data, Bioinformatics, vol. 16, no. 10, pp. 906–914, 2000.

    Article  Google Scholar 

  9. Gentleman, R., Carey, V., Huber, W., Irizarry, R., Dudoit, S.: Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Berlin: Springer Verlag, 2006.

    Google Scholar 

  10. Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H., Loh, M., Downing, J., Caligiuri, M., Bloomfield, C., Lander, E.: Molecular classification of cancer: Class Discovery and Class Prediction by Gene Expression Monitoring, Science, vol. 286, no. 15, pp. 531–537, 1999.

    Article  Google Scholar 

  11. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene Selection for Cancer Classification Using Support Vector Machines, Machine Learning, vol. 46, pp. 389–422, 2002.

    Article  MATH  Google Scholar 

  12. Hinneburg C. C. A., Keim, D. A.: What is the Nearest Neighbor in High Dimensional Spaces? In Proc. of the International Conference on Database Theory (ICDT). Cairo, Egypt: Morgan Kaufmann, September 2000, pp. 506–515.

    Google Scholar 

  13. Jiang, D., Tang, C. Zhang, A.: Cluster Analysis for Gene Expression Data: A survey, IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 11, November 2004.

    Google Scholar 

  14. Kuncheva, L. I.: Combining Pattern Classifiers. John Wiley, New Jersey, 2004.

    Book  MATH  Google Scholar 

  15. Martín-Merino, M., Muñoz, A.: Self Organizing Map and Sammon Mapping for Asymmetric Proximities, Neurocomputing, vol. 63, pp. 171–192, 2005.

    Article  Google Scholar 

  16. Martín-Merino, M., Muñoz, A.: A New Sammon Algorithm for Sparse Data Visualization, In International Conference on Pattern Recognition (ICPR), vol. 1. Cambridge (UK): IEEE Press, August 2004, pp. 477–481.

    Google Scholar 

  17. Molinaro, A., Simon, R. Pfeiffer, R.: Prediction Error Estimation: a Comparison of Resampling Methods, Bioinformatics, vol. 21, no. 15, pp. 3301–3307, 2005.

    Article  Google Scholar 

  18. Pekalska, E., Paclick, P., Duin, R.: A Generalized Kernel Approach to Dissimilarity-Based Classification,” Journal of Machine Learning Research, vol. 2, pp. 175–211, 2001.

    Article  Google Scholar 

  19. Valentini, G., Dietterich, T.: Bias-Variance Analysis of Support Vector Machines for the Development of Svm-Based Ensemble Methods, Journal of Machine Learning Research, vol. 5, pp. 725–775, 2004.

    MathSciNet  Google Scholar 

  20. Vapnik, V.: Statistical Learning Theory. New York: John Wiley & Sons, 1998.

    MATH  Google Scholar 

  21. West, M., Blanchette, C., Dressman, H., Huang, E., Ishida, S., Spang, R., Zuzan, H., Olson, J., Marks, J., Nevins, J.: Predicting the Clinical Status of Human Breast Cancer by Using Gene Expression Profiles, PNAS, vol. 98, no. 20, September 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blanco, Á., Martín-Merino, M., Rivas, J.D.L. (2007). Ensemble of Support Vector Machines to Improve the Cancer Class Prediction Based on the Gene Expression Profiles. In: Corchado, E., Corchado, J.M., Abraham, A. (eds) Innovations in Hybrid Intelligent Systems. Advances in Soft Computing, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74972-1_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74972-1_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74971-4

  • Online ISBN: 978-3-540-74972-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics