Skip to main content

Sensitive Stigmergic Agent Systems — A Hybrid Approach to Combinatorial Optimization

  • Chapter
Innovations in Hybrid Intelligent Systems

Part of the book series: Advances in Soft Computing ((AINSC,volume 44))

  • 1378 Accesses

Abstract

Systems composed of several interacting autonomous agents have a huge potential to efficiently address complex real-world problems. Agents communicate by directly exchanging information and knowledge about the environment. To cope with complex combinatorial problems, agents of the proposed model are endowed with stigmergic behaviour. Agents are able to indirectly communicate by producing and being influenced by pheromone trails. Each stigmergic agent has a certain level of sensitivity to the pheromone allowing various types of reactions to a changing environment. Resulting computational metaheuristic combines sensitive stigmergic behaviour and direct agent communication with the aim of better addressing combinatorial optimization NP-hard problems. The proposed model is tested for solving various instances of the Generalized Traveling Salesman Problem. Numerical experiments indicate the robustness and potential of the new metaheuristic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chira, C., Pintea, C.-M., Dumitrescu, D.: “Stigmergic Agents for Solving NP-difficult Problems”, Proceedings of Bio-Inspired Computing: Theory and Applications Conference, Evolutionary Computing volume, Wuhan, China (2006) 63–69

    Google Scholar 

  2. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: “Self organization in biological systems”; Princeton Univ. Press (2001)

    Google Scholar 

  3. Grasse, P.-P.: “La Reconstruction du Nid et Les Coordinations Interindividuelles Chez Bellicositermes Natalensis et Cubitermes sp. La Thorie de la Stigmergie: Essai dinterprtation du Comportement des Termites Constructeurs”, Insect Soc., 6 (1959) 41–80

    Article  Google Scholar 

  4. Dorigo, M., Di Caro, G., Gambardella, L.M.: “Ant algorithms for discrete optimization”, Artificial Life, 5 (1999) 137–172

    Article  Google Scholar 

  5. Dorigo M., Blum, C.: “Ant Colony Optimization Theory: A Survey”, Theoretical Computer Science, 3442–3 (2005) 243–278

    Article  MATH  MathSciNet  Google Scholar 

  6. Nwana, H.S.: “Software Agents: An Overview”, Knowledge Engineering Review, 11 (1996) 1–40

    Article  Google Scholar 

  7. Jennings, N. R.: “An agent-based approach for building complex software systems”, Comms. of the ACM, 444 (2001) 35–41

    Article  Google Scholar 

  8. Wooldridge, M., Dunne, P. E.: “The Complexity of Agent Design Problems: Determinism and History Dependence”, Annals of Mathematics and Artificial Intelligence, 453–4 (2005) 343–371

    Article  MATH  MathSciNet  Google Scholar 

  9. Pintea, C-M., Pop, C. P., Chira, C.: “The Generalized Traveling Salesman Problem solved with Ant Algorithms”, Journal of Universal Computer Science, Graz, Springer-Verlag, in press (2007).

    Google Scholar 

  10. Renaud, J., Boctor, F.F.: “An efficient composite heuristic for the Symmetric Generalized Traveling Salesman Problem”, European Journal of Operational Research, 108 (1998) 571–584

    Article  MATH  Google Scholar 

  11. Snyder, L.V., Daskin, M.S.: “A Random-Key Genetic Algorithm for the Generalized Traveling Salesman Problem”, European Journal of Operational Research (2006), 38–53

    Google Scholar 

  12. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chira, C., Pintea, CM., Dumitrescu, D. (2007). Sensitive Stigmergic Agent Systems — A Hybrid Approach to Combinatorial Optimization. In: Corchado, E., Corchado, J.M., Abraham, A. (eds) Innovations in Hybrid Intelligent Systems. Advances in Soft Computing, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74972-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74972-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74971-4

  • Online ISBN: 978-3-540-74972-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics