Skip to main content

CUBIT and Seismic Wave Propagation Based Upon the Spectral-Element Method: An Advanced Unstructured Mesher for Complex 3D Geological Media

  • Conference paper
Proceedings of the 16th International Meshing Roundtable

Abstract

Unstructured hexahedral mesh generation is a critical part of the modeling process in the Spectral-Element Method (SEM). We present some examples of seismic wave propagation in complex geological models, automatically meshed on a parallel machine based upon CUBIT (Sandia Laboratory), an advanced 3D unstructured hexahedral mesh generator that offers new opportunities for seismologist to design, assess, and improve the quality of a mesh in terms of both geometrical and numerical accuracy. The main goal is to provide useful tools for understanding seismic phenomena due to surface topography and subsurface structures such as low wave-speed sedimentary basins. Our examples cover several typical geophysical problems: 1) “layer-cake” volumes with high-resolution topography and complex solid-solid interfaces (such as the Campi Flegrei Caldera Area in Italy), and 2) models with an embedded sedimentary basin (such as the Taipei basin in Taiwan or the Grenoble Valley in France).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bielak, J, Ghattas, O, and Kim, E J (2005) Parallel octree-based finite element method for large-scale earthquake ground motion simulation. Computer Modeling in Engineering and Sciences, 10(2):99–112.

    MathSciNet  Google Scholar 

  • Bouchon, M. and Sanchez-Sesma, F. (2007). Boundary integral equations and boundary elements methods in elastodynamics. In: Wu R-S and Maupin V (eds), Advances in Wave Propagation in Heterogeneous Media, Advances in Geophysics, 48 Elsevier - Academic Press.

    Google Scholar 

  • citerra.gps.caltech.edu

    Google Scholar 

  • Courant, R, Friedrichs, K O, and Lewy, H (1928) Über die partiellen differenzgleichungen der mathematischen physik (on the partial difference equations of mathematical physics). Mathematische Annalen, 100:32–74.

    Article  MathSciNet  Google Scholar 

  • cubit.sandia.gov

    Google Scholar 

  • Di Prisco C, Stupazzini M and Zambelli C (2007) Non-linear SEM numerical analyses of dry dense sand specimens under rapid and dynamic loading. International Journal for Numerical and Analytical Methods in Geomechanics, 31-6:757–788.

    Article  Google Scholar 

  • Faccioli E, Vanini M, Paolucci R and Stupazzini M (2005) Comment on "Domain reduction method for three-dimensional earthquake modeling in localized regions". Bulletin of the Seismological Society of America, 95:763–769

    Article  Google Scholar 

  • Käser M, Dumbser M, De la Puente J and Igel H (2007) An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes iii: Viscoelastic attenuation. Geophysical Journal International, 168:224–242

    Article  Google Scholar 

  • Komatitsch, D, Barnes, C, and Tromp, J (2000) Simulation of anisotropic wave propagation based upon a spectral element method. 65(4):1251–1260.

    Google Scholar 

  • Komatitsch, D, Martin, R, Tromp, J, Taylor, M A, and Wingate, B A (2001) Wave propagation in 2-D elastic media using a spectral element method with triangles and quadrangles. Journal of Computational Acoustic, 9(2):703–718.

    Article  Google Scholar 

  • Komatitsch, D, Liu, Q, Tromp, J, Süss, P, Stidham, C, and Shaw, J H (2004) Simulations of ground motion in the Los Angeles basin based upon the Spectral-Element method. Bulletin Seismological Society American, 94:187–206.

    Article  Google Scholar 

  • Komatitsch, D, Tsuboi, S, and Tromp, J (2005) The spectral-element method in seismology. In: Levander A. and Nolet G., (eds), Seismic Earth: Array Analysis of Broadband Seismograms, volume 157 of Geophysical Monograph, pages 205–228 American Geophysical Union, Washington DC, USA.

    Google Scholar 

  • glaro.sdtcumn.edu/gkhome/views/metis

    Google Scholar 

  • Lee S J, Chen H W, Liu Q, Komatitsch D, Huang B S, and Tromp J (2007) Mesh generation and strong ground motion simulation in the taipei basin based upon the spectral-element method. submitted.

    Google Scholar 

  • Moczo P, Robertsson J O A, and Eisner L (2007) The finite-difference time-domain method for modeling of seismic wave propagation, in advances in wave propagation in heterogeneous Earth In: Wu R-S and Maupin V (eds), Advances in Wave Propagation in Heterogeneous Media, Advances in Geophysics, 48 Elsevier - Academic Press.

    Google Scholar 

  • pympi.sourceforge.net

    Google Scholar 

  • Ronchi C, Ianoco R and Paolucci P S (1996) The "Cubed Sphere": a new method for the solution of partial differential equations in spherical geometry. J Comput Phys, 124:93–114.

    Article  MATH  MathSciNet  Google Scholar 

  • Satriano C, Zollo A, Capuano P, Russo G, Vanorio T, Caielli G, Lovisa L and Moretti M (2006) A 3D velociy model for earthquake location in Campi Flegrei area application to the 1982-84 uplift event. In: Zollo A, Capuano P and Corciulo M (eds.), Geophysical Exploration of the Campi Flegrei (Southern Italy) caldera interiors: Data, Methods and Results. DoppiaVoce ed, Naples.

    Google Scholar 

  • Scott M A, Earp M N, Benzley S E and Stephenson M B (2005) Adaptive sweeping techniques. In Proceedings of the 14th International Meshing Roundtable, pages 417–432 Springer.

    Google Scholar 

  • M L Staten , R A Kerr, S.J.Owen and T D Blacker (2006). Unconstrained paving and plastering: Progress update. In: Proceedings, 15th International Meshing Roundtable, pages 469–486. Springer-Verlag.

    Google Scholar 

  • Stupazzini M (2004) A spectral element approach for 3D dynamic soil-structure interaction problems. PhD thesis, Milan University of Technology, Milan, Italy.

    Google Scholar 

  • Stupazzini M. (2006) 3D ground motion simulation of the grenoble valley by geoelse. In: Third International Symposium on the Effects of Surface Geology on Seismic Motion, August 30th - September 1st, Grenoble, France.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Casarotti, E., Stupazzini, M., Lee, S.J., Komatitsch, D., Piersanti, A., Tromp, J. (2008). CUBIT and Seismic Wave Propagation Based Upon the Spectral-Element Method: An Advanced Unstructured Mesher for Complex 3D Geological Media . In: Brewer, M.L., Marcum, D. (eds) Proceedings of the 16th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75103-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75103-8_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75102-1

  • Online ISBN: 978-3-540-75103-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics