Summary
We study methods for recovering tensor metrics from given error estimates and properties of meshes which are quasi-uniform in these metrics. We derive optimal upper and lower bounds for the global error on these meshes. We demonstrate with numerical experiments that the edge-based error estimates are preferable for recovering anisotropic metrics than the conventional element-based errors estimates.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agouzal A, Lipnikov K, Vassilevski Y (1999) Adaptive generation of quasi-optimal tetrahedral meshes, East-West J. Numer. Math. 7, 223–244.
Buscaglia GC, Dari EA (1997) Anisotropic mesh optimization and its application in adaptivity, Inter. J. Numer. Meth. Engrg. 40, 4119–4136.
Chen L, Sun P, Xu J (2007) Optimal anisotropic meshes for minimizing interpolation errors in $L^p$-norm. Mathematics of Computation 76, 179-204.
D’Azevedo E (1991) Optimal triangular mesh generation by coordinate transformation, SIAM J. Sci. Stat. Comput. 12, 755–786.
Frey PJ, Alauzet F (2005) Anisotropic mesh adaptation for CFD computations. Comput. Methods Appl. Mech. Engrg. 194, 5068–5082.
George PL (1991) Automatic mesh generation. Chichester: John Wiley & Sons Ltd., 344p.
Hecht F (2005) A few snags in mesh adaptation loops, In proceedings of the 14th International Meshing Roundtable, Springer-Verlag Berlin Heidelberg.
Huang W (2005) Metric tensors for anisotropic mesh generation. J. Comp. Physics. 204, 633–665.
Knupp P (2001) Algebraic mesh quality metrics. SIAM Journal on Scientific Computing 23, 193–218.
Lipnikov K, Vassilevski Y (2003) Parallel adaptive solution of 3D boundary value problems by Hessian recovery. Comput. Methods Appl. Mech. Engrg. 192, 1495–1513.
Nadler E (1986) Piecewise linear best $L_2$ approximation on triangulations. In: Approximation Theory V, 499–502, (C. K.Chui, L.L. Schumaker, and J.D. Ward, editors), Academic Press.
Vassilevski Y, Lipnikov K (1999) Adaptive algorithm for generation of quasi-optimal meshes, Comp. Math. Math. Phys. 39, 1532–1551.
Vassilevski Y, Agouzal A (2005) An unified asymptotic analysis of interpolation errors for optimal meshes, Doklady Mathematics 72, 879–882.
Vassilevski Y, Dyadechko V, Lipnikov K. Hessian based anisotropic mesh adaptation in domains with discrete boundaries, Russian J. Numer. Anal. Math. Modelling (2005) 20, 391–402.
Vassilevski Y, Lipnikov K. Error bounds for controllable adaptive algorithms based on a Hessian recovery. J. Computational Mathematics and Mathematical Physics, V.45, No.8, pp. 1374-1384, 2005.
Zhu JZ, Zienkiewicz OC (1990) Superconvergence recovery technique and a posteriori error estimators, Inter. J. Numer. Meth. Engrg. 30, 1321–1339.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Agouzal, A., Lipnikov, K., Vassilevski, Y. (2008). Generation of Quasi-Optimal Meshes Based on a Posteriori Error Estimates. In: Brewer, M.L., Marcum, D. (eds) Proceedings of the 16th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75103-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-75103-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75102-1
Online ISBN: 978-3-540-75103-8
eBook Packages: EngineeringEngineering (R0)