Skip to main content

Generation of Quasi-Optimal Meshes Based on a Posteriori Error Estimates

  • Conference paper
Proceedings of the 16th International Meshing Roundtable

Summary

We study methods for recovering tensor metrics from given error estimates and properties of meshes which are quasi-uniform in these metrics. We derive optimal upper and lower bounds for the global error on these meshes. We demonstrate with numerical experiments that the edge-based error estimates are preferable for recovering anisotropic metrics than the conventional element-based errors estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agouzal A, Lipnikov K, Vassilevski Y (1999) Adaptive generation of quasi-optimal tetrahedral meshes, East-West J. Numer. Math. 7, 223–244.

    MATH  MathSciNet  Google Scholar 

  2. Buscaglia GC, Dari EA (1997) Anisotropic mesh optimization and its application in adaptivity, Inter. J. Numer. Meth. Engrg. 40, 4119–4136.

    Article  MATH  Google Scholar 

  3. Chen L, Sun P, Xu J (2007) Optimal anisotropic meshes for minimizing interpolation errors in $L^p$-norm. Mathematics of Computation 76, 179-204.

    Google Scholar 

  4. D’Azevedo E (1991) Optimal triangular mesh generation by coordinate transformation, SIAM J. Sci. Stat. Comput. 12, 755–786.

    Article  MATH  MathSciNet  Google Scholar 

  5. Frey PJ, Alauzet F (2005) Anisotropic mesh adaptation for CFD computations. Comput. Methods Appl. Mech. Engrg. 194, 5068–5082.

    Article  MATH  MathSciNet  Google Scholar 

  6. George PL (1991) Automatic mesh generation. Chichester: John Wiley & Sons Ltd., 344p.

    Google Scholar 

  7. Hecht F (2005) A few snags in mesh adaptation loops, In proceedings of the 14th International Meshing Roundtable, Springer-Verlag Berlin Heidelberg.

    Book  Google Scholar 

  8. Huang W (2005) Metric tensors for anisotropic mesh generation. J. Comp. Physics. 204, 633–665.

    Article  MATH  Google Scholar 

  9. Knupp P (2001) Algebraic mesh quality metrics. SIAM Journal on Scientific Computing 23, 193–218.

    Article  MATH  MathSciNet  Google Scholar 

  10. Lipnikov K, Vassilevski Y (2003) Parallel adaptive solution of 3D boundary value problems by Hessian recovery. Comput. Methods Appl. Mech. Engrg. 192, 1495–1513.

    Article  MATH  MathSciNet  Google Scholar 

  11. Nadler E (1986) Piecewise linear best $L_2$ approximation on triangulations. In: Approximation Theory V, 499–502, (C. K.Chui, L.L. Schumaker, and J.D. Ward, editors), Academic Press.

    Google Scholar 

  12. Vassilevski Y, Lipnikov K (1999) Adaptive algorithm for generation of quasi-optimal meshes, Comp. Math. Math. Phys. 39, 1532–1551.

    Google Scholar 

  13. Vassilevski Y, Agouzal A (2005) An unified asymptotic analysis of interpolation errors for optimal meshes, Doklady Mathematics 72, 879–882.

    MATH  Google Scholar 

  14. Vassilevski Y, Dyadechko V, Lipnikov K. Hessian based anisotropic mesh adaptation in domains with discrete boundaries, Russian J. Numer. Anal. Math. Modelling (2005) 20, 391–402.

    Article  MATH  MathSciNet  Google Scholar 

  15. Vassilevski Y, Lipnikov K. Error bounds for controllable adaptive algorithms based on a Hessian recovery. J. Computational Mathematics and Mathematical Physics, V.45, No.8, pp. 1374-1384, 2005.

    Google Scholar 

  16. Zhu JZ, Zienkiewicz OC (1990) Superconvergence recovery technique and a posteriori error estimators, Inter. J. Numer. Meth. Engrg. 30, 1321–1339.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Agouzal, A., Lipnikov, K., Vassilevski, Y. (2008). Generation of Quasi-Optimal Meshes Based on a Posteriori Error Estimates. In: Brewer, M.L., Marcum, D. (eds) Proceedings of the 16th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75103-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75103-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75102-1

  • Online ISBN: 978-3-540-75103-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics