Skip to main content

Simultaneous Stochastic Simulation of Multiple Perturbations in Biological Network Models

  • Conference paper
Computational Methods in Systems Biology (CMSB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4695))

Included in the following conference series:

Abstract

Stochastic models of biological networks are well-established in computational systems biology. However, models are abstractions and parameters may be inaccurate or perturbed. An important topic is thus the sensitivity of analysis results to parameter perturbations. This investigates how seriously potential parameter perturbations affect the analysis results and to which parameters the results are most sensitive. In this paper, a stochastic simulation algorithm is presented that yields results for multiple perturbed models from a single simulation experiment and that is thus able to perform comparisons of results for various parameter sets without explicitly simulating each of these separately. The algorithm essentially makes use of likelihood ratios in a similar fashion as in the Importance Sampling technique for variance reduction. With a suitable adaptation to the context of perturbed model parameters it yields substantial runtime savings compared to multiple separate simulations of the perturbed models without any loss in statistical accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected escherichia coli cells. Genetics 149, 1633–1648 (1998)

    Google Scholar 

  2. Blake, W.J., Kaern, M., Cantor, C.R., Collins, J.J.: Noise in eukaryotic gene expression. Nature 422, 633–637 (2003)

    Article  Google Scholar 

  3. Fedoroff, N., Fontana, W.: Small numbers of big molecules. Science 297, 1129–1131 (2002)

    Article  Google Scholar 

  4. McAdams, H.H., Arkin, A.: Stochastic mechanisms in gene expression. Proceedings of the National Academy of Science USA 94, 814–819 (1997)

    Article  Google Scholar 

  5. McAdams, H.H., Arkin, A.: It’s a noisy business! Trends in Genetics 15(2), 65–69 (1999)

    Article  Google Scholar 

  6. Turner, T.E., Schnell, S., Burrage, K.: Stochastic approaches for modelling in vivo reactions. Computational Biology and Chemistry 28, 165–178 (2004)

    Article  MATH  Google Scholar 

  7. Gillespie, D.T.: A general method for numerically simulating the time evolution of coupled chemical reactions. Journal of Computational Physics 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  8. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 71(25), 2340–2361 (1977)

    Article  Google Scholar 

  9. Gillespie, D.: Approximate accelerated stochastic simulation of chemically reacting systems. Journal of Chemical Physics 115, 1716–1732 (2001)

    Article  Google Scholar 

  10. Gunawan, R., Cao, Y., Petzold, L.R., Doyle III, F.J.: Sensitivity analysis of discrete stochastic systems. Biophysical Journal 88, 2530–2540 (2005)

    Article  Google Scholar 

  11. Delbrück, M.: Statistical fluctuations in autocatalytic reactions. Journal of Chemical Physics 8, 120–124 (1940)

    Article  Google Scholar 

  12. Singer, K.: Application of the theory of stochastic processes to the study of irreproducible chemical reactions and nucleation processes. Journal of the Royal Statistical Society 15, 92–106 (1953)

    MATH  Google Scholar 

  13. Bartholomay, A.F.: A Stochastic Approach to Chemical Reaction Kinetics. Thesis, Harvard University (1957)

    Google Scholar 

  14. Bharucha-Reid, A.T.: Elements of the Theory of Markov Processes and Their Applications. McGraw-Hill, New York (1960)

    MATH  Google Scholar 

  15. McQuarrie, D.A.: Stochastic approach to chemical kinetics. Journal of Applied Probability 4, 413–478 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  16. van Kampen, N.: Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam (1992)

    Google Scholar 

  17. Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica A 188, 404–425 (1992)

    Article  Google Scholar 

  18. Wolkenhauer, O., Ullah, M., Kolch, W., Cho, K.H.: Modelling and simulation of intracellular dynamics: Choosing an appropriate framework. IEEE Transactions On NanoBioScience 3(3), 200–207 (2004)

    Article  Google Scholar 

  19. Bremaud, P.: Markov Chains. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  20. Bortz, A.B., Kalos, M.H., Lebowitz, J.L.: A new algorithm for Monte Carlo simulation of Ising spin systems. Journal of Computational Physics 17, 10–18 (1975)

    Article  Google Scholar 

  21. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. Journal of Physical Chemistry A 104, 1876–1889 (2000)

    Google Scholar 

  22. Cao, Y., Li, H., Petzold, L.R.: Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. Journal of Chemical Physics 121(9), 4059–4067 (2004)

    Article  Google Scholar 

  23. Feller, W.: An Introduction to Probability Theory and its Applications, vol. 2. Wiley, Chichester (1971)

    MATH  Google Scholar 

  24. Shiryaev, A.N.: Probability, 2nd edn. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  25. Hammersley, J.M., Handscomb, D.C.: Monte Carlo Methods. Methuen (1964)

    Google Scholar 

  26. Glynn, P.W., Iglehart, D.L.: Importance sampling for stochastic simulations. Management Science 35(11), 1367–1392 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. Cao, Y., Gillespie, D., Petzold, L.: Avoiding negative populations in explicit Poisson tau-leaping. Journal of Chemical Physics 123, 54104 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Muffy Calder Stephen Gilmore

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sandmann, W. (2007). Simultaneous Stochastic Simulation of Multiple Perturbations in Biological Network Models. In: Calder, M., Gilmore, S. (eds) Computational Methods in Systems Biology. CMSB 2007. Lecture Notes in Computer Science(), vol 4695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75140-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75140-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75139-7

  • Online ISBN: 978-3-540-75140-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics