Trajectory databases is an important research area that has received a lot of interest in the last decade. The objective of trajectory databases is to extend database technology to support the representation and querying of moving objects and their trajectory.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
T. Abraham and J.F. Roddick. Survey of spatio-temporal databases. Geoinformatica, 3(1):61–99, 1999.
J.F. Allen. Maintaining knowledge about temporal intervals. Communications ACM, 26(11):832–843, 1983.
V.T. de Almeida and R.H. Güting. Supporting uncertainty in moving objects in network databases. In Proceedings of the 13th International Symposium on Geographic Information Systems (GIS’05), pp. 31–40, ACM, 2005.
V.T. Almeida, R.H. Güting, and T. Behr. Querying moving objects in secondo. In Proceedings of Mobile Data Management (MDM’06), p. 47, 2006.
P. Bakalov, M. Hadjieleftheriou, E.J. Keogh, and V.J. Tsotras. Efficient trajectory joins using symbolic representations. In Proceedings of Mobile Data Management (MDM’05), pp. 86–93, 2005.
P. Bakalov, M. Hadjieleftheriou, and V.J. Tsotras. Time Relaxed Spatiotemporal Trajectory Joins. In Proceedings of the 13th Annual International Workshop on Geographic Information Systems (GIS’05), pp. 182–191, 2005.
Y. Bédard. Visual modeling of spatial databases: Towards spatial pvl and uml. Geomatica, 53:169–185, 1999.
Y. Bédard, S. Larrivée, M.-J. Proulx, and M. Nadeau. Modeling Geospatial Databases with Plug-Ins for Visual Languages: A Pragmatic Approach and the Impacts of 16 years of Research and Experimentations on Perceptory. In Conceptual Modeling for Advanced Application Domains, Vol. 3289, pp. 17–30. Springer, Berlin Heidelberg New York, 2004.
J. Bochnak, M. Coste, and M. Roy. Géométrie Algébrique Réelle. Springer, Berlin Heidelberg New York, 1987.
Boosting location-based services with a moving object database engine. In Proceedings of the 5th Workshop on Data Engineering for Wireless and Mobile Access (MobiDE’06).
K. Borges, C. Davis, and A. Laender. Omt-g: An object-oriented data model for geographic applications. GeoInformatica, 5:221–260, 2001.
J. Brodeur, Y. Bédard, and M.-J. Proulx. Modelling Geospatial Application Database Using Uml-Based Repositories Aligned with International Standards in Geomatics. In ACM, editor, Proceedings of the 8th International Symposium on Geographic Information Systems (GIS’00), pp. 39–46, 2000.
E. Camossi, M. Bertolotto, E. Bertino, and G. Guerrini. A Multigranular Spatiotemporal Data Model. In Proceedings of the 11th International Symposium on Geographic Information Systems (GIS’03), pp. 94–101, ACM, 2003.
E. Camossi, M. Bertolotto, and E. Bertino. A flexible approach to spatio-temporal multigranularity in an object data model. International Journal of Geographical Information Science, 20(5), 2006.
L. Chen, T. Özsu, and V. Oria. Robust and Fast Similarity Search for Moving Object Trajectories. In F. Ozcan (ed.), Proceedings of the International Conference on Management of Data (SIGMOD’05), pp. 491–502. ACM, 2005.
H. Darwen. Valid Time and Transaction Time Proposals: Language Design Aspects. In Temporal Databases: Research and Practice, LNCS 1399, pp. 195–210, 1998.
C. Date, H. Darwen, and N. Lorentzos. Temporal Data and the Relational Model. Model, Morgan Kaufmann, 2003.
S. Dieker and R.H. Güting. Plug and play with query algebras: secondo - a generic dbms development environment. In Proceedings of the International Symposium on Database Engineering & Applications (IDEAS ’00), pp. 380–392. IEEE Computer Society, 2000.
M.J. Egenhofer. Approximations of geospatial lifelines. 2003.
M.J. Egenhofer and R.D. Franzosa. Point set topological relations. International Journal of Geographical Information Systems, 5:161–174, 1991.
B. El-Geresy and C. Jones. Five Questions to Answer in Time: A Critical Survey of Approaches to Modelling in Spatio-Temporal GIS, Chap. 3. GIS and Geocomputation-Innovations in GIS 7. Taylor & Francis, London, 2000
M. Erwig, R.H. Güting, M. Schneider, and M. Vazirgiannis. Spatio-temporal data types: An approach to modeling and querying moving objects in databases. GeoInformatica, 3(3):269–296, 1999.
M. Erwig and M. Schneider. Developments in Spatio-Temporal Query Languages. In Proceedings of 10th International Conference and Workshop on Database and Expert Systems Applications (DEXA’99), pp. 441–449, 1999.
M. Erwig and M. Schneider. Spatio-temporal predicates. IEEE Transaction Knowledge Data Engeneering, 14(4):881–901, 2002.
L. Forlizzi, R.H. Güting, E. Nardelli, and M. Schneider. A Data Model and Data Structures for Moving Objects Databases. In Proceedings of the International Conference on Management of Data (SIGMOD’00), pp. 319–330, 2000.
E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis. Nearest Neighbor Search on Moving Object Trajectories. In Proceedings of 9th International Symposium on Advances in Spatial and Temporal Databases (SSTD’01), Vol. 3633. Lecture Notes in Computer Science, pp. 328–345. Springer, Berlin Heidelberg New York, 2005.
F. Geerts. Moving Objects and their Equations of Motion. In Proceedings of the 1st International Symposium on Applications of Constraint Databases, volume 3074 of Lecture Notes in Computer Science, pp. 41–52. Springer, Berlin Heidelberg New York, 2004.
T. Griffiths, A. Fernandes, N. Paton, and R. Barr. The tripod spatio-historical data model. Data and Knowledge Engineering, 49:23–65, 2004.
S. Grumbach, M. Koubarakis, P. Rigaux, M. Scholl, and S. Skiadopoulos. Spatio-temporal Models and Languages: An Approach Based on Constraints, Chap. 5, pp. 177–201, 2003.
R.H. Güting, M.H. Böhlen, M. Erwig, C.S. Jensen, N.A. Lorentzos, M. Schneider, and M. Vazirgiannis. A foundation for representing and quering moving objects. ACM Transactions on Database System, 25(1):1–42, 2000.
R. Guting, M. Bohlen, M. Erwig, C. Jensen, M. Schneider, N. Lorentzos, E. Nardelli, M. Schneider, and J. Viqueira. Spatio-Temporal Models and Languages: An Approach Based on Data Types. In Spatio-Temporal Databases: The Chorochronos Approach, LNCS 2520, Chap. 4, pp. 117–176, 2003.
M.A. Hammad, W.G. Aref, and A.K. Elmagarmid. Stream Window Join: Tracking Moving Objects in Sensor-Network Databases. In Proceedings of 15th International Conference on Scientific and Statistical Database Management (SSDBM’03), pp. 75–84, 2003.
K. Hornsby and M.J. Egenhofer. Modeling moving objects over multiple granularities. Annual Mathematics Artificial Intelligence, 36(1–2):177–194, 2002.
B. Huang and C. Claramunt. Stoql: An ODMG-Based Spatio-Temporal Object Model and Query Language. In Proceedings of the 10th International Symposium on Spatial Data Handling (SDH’02), pp. 225–237, 2002.
ISO/IEC. Information Technology – Database languages – SQL – Part 7: Temporal (SQL/Foundation). ISO/IEC 9075-2 Working Draft. ISO, 2001.
ISO/TC211. Geographic Information and Temporal Schema. ISO 19108:2002. ISO, 2002.
ISO/TC211. Geographic Information and Spatial Schema. ISO 19107:2003. ISO, 2003.
I. Kakoudakis. The Tau Temporal Object Model, M.Sc. Thesis, Umist, 1996.
P.C. Kanellakis, G.M. Kuper, and P. Revesz. Constraint query languages. Journal of Computer and System Sciences, 51:26–52, 1995.
V. Khatri, S. Ram, and R. Snodgrass. Augmenting a Conceptual Model with Geospatiotemporal Annotations. IEEE Transactions on Knowledge and Data Engineering, 16:1324–1338, 2004.
B. Kuijpers, J. Paredaens, and D.V. Gucht. Towards a theory of movie database queries. In Proceedings of the 7th International Workshop on Temporal Representation and Reasoning (TIME’00), pp. 95–102. IEEE Computer Society, 2000.
G. Kuper, L. Libkin, and J. Paredaens. Constraint Databases. Springer, Berlin Heidelberg New York, 2000.
S. Larrivée, Y. Bédard, and J. Pouliot. How to Enrich the Semantics of Geospatial Databases by Properly Expressing 3d Objects in a Conceptual Model. In Proceedings of the Workshops On The Move to Meaningful Internet Systems, number 3762 in LNCS. Springer, Berlin Heidelberg New York, 2005.
J.A.C. Lema, L. Forlizzi, R.H. Güting, E. Nardelli, and M. Schneider. Algorithms for moving objects databases. The Computer Journal, 46(6):680–712, 2003.
M.F. Mokbel, X. Xiong, W.G. Aref, S.E. Hambrusch, S. Prabhakar, and M.A. Hammad. Place: A Query Processor for Handling Real-Time Spatio-Temporal Data Streams. In Proceedings of 30th International Conference on Very Large Data Bases (VLDB’04), pp. 1377–1380, 2004.
M.F. Mokbel, X. Xiong, M.A. Hammad, and W.G. Aref. Continuous query processing of spatio-temporal data streams in place. GeoInformatica, 9(4):343–365, 2005.
D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query Processing in Spatial Network Databases. In Proceedings of 29th International Conference on Very Large Data Bases (VLDB’03), pp. 802–813, 2003.
D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis. Group nearest neighbor queries. In Proceedings of the 20th International Conference on Data Engineering (ICDE’04), pp. 301–312. IEEE Computer Society, 2004.
J. Paredaens, G. Kuper, and L. Libkin, editors. Constraint databases. Springer, Berlin Heidelberg New York, 2000.
C. Parent. A Framework for Characterizing Spatio-Temporal Data Models. In S.S. Y. Masunaga (ed.), Advances in Multimedia and Databases for the New Century, pp. 89–97. World Scientific, Singapore, 2000.
K. Patroumpas and T.K. Sellis. Managing Trajectories of Moving Objects as Data Streams. In J. Sander and M.A. Nascimento, editors, Proceedings of 2nd International Workshop on Spatio-Temporal Database Management (STDBM’04), pp. 41–48, 2004.
N. Pelekis. STAU: A Spatio-Temporal Extension to ORACLE DBMS. Ph.D. Thesis, 2002.
N. Pelekis, B. Theodoulidis, I. Kopanakis, and Y. Theodoridis. Literature review of spatio-temporal database models. Knowledge Engeneering Review, 19(3):235–274, 2004.
N. Pelekis, B. Theodoulidis, Y. Theodoridis, and I. Kopanakis. An Oracle data cartridge for moving objects, laboratory of information systems, department of informatics, university of piraeus, unipi-isl-tr-2005-01, 2005. http://isl.cs.unipi.gr/db/publications.html.
N. Pelekis, Y. Theodoridis, S. Vosinakis, and T. Panayiotopoulos. Hermes – A Framework for Location-Based Data Management. In Proceedings of 10th International Conference on Extending Database Technology (EDBT’06), pp. 1130–1134, 2006.
D.J. Peuquet. Making space for time: Issues in space-time data representation. Geoinformatica, 5(1):11–32, 2001.
D. Pfoser. Indexing the trajectories of moving objects. IEEE Data Engeneering Bullettin, 25(2):3–9, 2002.
D. Pfoser and C.S. Jensen. Capturing the uncertainty of moving-object representations. In R.H. Güting, D. Papadias, and F.H. Lochovsky, (eds.), Proceedings of the 6th International Symposium on Advances in Spatial Databases (SSD’99), Vol. 1651. Lecture Notes in Computer Science, pp. 111–132. Springer, Berlin Heidelberg New York, 1999.
D. Pfoser, C.S. Jensen, and Y. Theodoridis. Novel Approaches in Query Processing for Moving Object Trajectories. In Proceedings of 26th International Conference on Very Large Data Bases (VLDB’00), pp. 395–406, 2000.
R. Price, N. Tryfona, and C. Jensen. Extended spatiotemporal uml: Motivations, requirements, and constructs. In Journal of Database Management, 11:14–27, 2000.
R. Price, N. Tryfona, and C. Jensen. Extending UML for Space- and Time-Dependent Applications. Idea Group Publishing, 2002.
S. Ram, R. Snodgrass, V. Khatri, and Y. Hwang. DISTIL: A Design Support Environment for Conceptual Modeling of Spatio-temporal Requirements, pp. 70–83. 2001.
P. Rigaux, M. Scholla, L. Segoufin, and S. Grumbach. Building a constraintbased spatial database system: Model, languages, and implementation. Information Systems, 28:563–595, 2003.
A.P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and Querying Moving Objects. In Proceedings of the 13th International Conference on Data Engineering (ICDE’97), pp. 422–432. IEEE Computer Society, 1997.
R. Snodgrass, M. Böhlen, C. Jensen, and N. Kline. Adding valid time to SQL/Temporal. ANSI X3H2-96-501r2, ISO/IEC JTC1/SC21/WG3 DBL MAD-146r2, 1996.
R. Snodgrass, M. Böhlen, C. Jensen, and A. Steiner. Adding transaction time to SQL/ Temporal: Temporal change proposal. ANSI X3H2-96-152r, ISO-ANSI SQL/ISO/IECJTC1/ SC21/WG3 DBL MCI-143. ISO, 1996.
R. Snodgrass, M. Böhlen, C. Jensen, and A. Steiner. Transitioning Temporal Support in tsql2 to sql3. In Temporal Databases: Research and Practice, LNCS 1399, pp. 150–194, 1998.
Spatio-Temporal Databases: The CHOROCHRONOS Approach, Vol. 2520 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg New York, 2003.
J. Su, H. Xu, and O.H. Ibarra. Moving Objects: Logical Relationships and Queries. In C.S. Jensen, M. Schneider, B. Seeger, and V.J. Tsotras, editors, Proceedings of 7th International Symposium on Advances in Spatial and Temporal Databases (SSTD’01), volume 2121 of Lecture Notes in Computer Science, pp. 3–19. Springer, Berlin Heidelberg New York, 2001.
Y. Theodoridis. Ten benchmark database queries for location-based services. The Computer Journal, 46(6):713–725, 2003.
G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain. Managing uncertainty in moving objects databases. ACM Transactions Database System, 29(3):463–507, 2004.
N. Tryfona and C. Jensen. Conceptual data modeling for spatiotemporal applications. GeoInformatica, 3:245–268, 1999.
N. Tryfona, R. Price, and C. Price. Spatiotemporal Conceptual Modeling., chapter 3, pp. 79–116, Berlin, 2003.
M. Vlachos, D. Gunopulos, and G. Kollios. Discovering Similar Multidimensional Trajectories. In Proceedings of the 18th International Conference on Data Engineering (ICDE’02), pp. 673–684. IEEE Computer Society, 2002.
N.V. de Weghe, F. Witlox, A.G. Cohn, T. Neutens, and P.D. Maeyer. Efficient storage of interactions between multiple moving point objects. In OTM Workshops (2), pp. 1636–1647, 2006.
O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving Objects Databases: Issues and Solutions. In Proceedings of the 10th International Conference on Scientific and Statistical Database Management (SSDBM’98), pp. 111–122, IEEE Computer Society, 1998.
O. Wolfson, A.P. Sistla, S. Chamberlain, and Y. Yesha. Updating and querying databases that track mobile units. Distributed and Parallel Databases, 7(3):257–387, 1999.
J. Zhang and M. Goodchild. Uncertainty in Geographical Information. Taylor & Francis, New York, 2002.
E. Zimanyi, C. Parent, and S. Spaccapietra. Conceptual Modeling for Traditional and Spatio-Temporal Applications – The MADS Approach. Springer, Berlin Heidelberg New York, 2006.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Macedo, J. et al. (2008). Trajectory Data Models. In: Giannotti, F., Pedreschi, D. (eds) Mobility, Data Mining and Privacy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75177-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-75177-9_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75176-2
Online ISBN: 978-3-540-75177-9
eBook Packages: Computer ScienceComputer Science (R0)