Abstract
We present an algorithm for finding closed form solutions in elliptic functions of completely integrable systems. First we solve the linear differential equations in spectral parameter of Hermite-Halphen type. The integrability condition of the pair of equations of Hermite-Halphen type gives the large family of completely integrable systems of Lax-Novikov type. This algorithm is implemented on the basis of the computer algebra system MAPLE. Many examples, such as vector nonlinear Schödinger equation, optical cascaded equations and restricted three wave system are considered. New solutions for optical cascaded equations are presented. The algorithm for linear ODE’s with elliptic functions coefficients is generalized to 2×2 matrix equations with elliptic coefficients.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Burger, R., Labahn, G., van Hoeji, M.: Closed form solutions of linear odes having elliptic function coefficients. In: Proceedings of ISSAC 2004, pp. 58–64 (2004)
Gerdt, V., Kostov, N.: Computer algebra in the theory of ordinary differential equations of Halphen type, Computers and mathematics. In: Proc.of Int. Conf., Cambridge, USA, pp. 178–188. Springer, New-York (1989)
Whittaker, E., Watson, G.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1986)
Enolskii, V., Kostov, N.: On the geometry of elliptic solitons. Acta Applicandae Math. 36, 57–86 (1994)
Christiansen, P., Eilbeck, J., Enolskii, V., Kostov, N.: Quasi-periodic and periodic solutions for Manakov type systems of coupled nonlinear Schrodinger equations. Proc. Royal Soc. London A 456, 2263–2281 (2000)
Eilbeck, J., Enolskii, V., Kostov, N.: Quasi-periodic and periodic solutions for vector nonlinear Schrodinger equations. Journ. Math. Phys. 41, 8236–8248 (2000)
Kostov, N.: Quasi-periodic and periodic solutions for dynamical systems related to Korteweg-de Vries equation. The European Physical Journal B. 29, 255–260 (2002)
Ablowitz, M., Kaup, D., Newell, A., Segur, H.: The inverse scattering transform–Fourier analysis for nonlinear problems. Studies in Appl. Math. 53, 249–315 (1974)
Kostov, N., Enolskii, V., Gerdjikov, V., Konotop, V., Salerno, M.: Two-component Bose-Einstein condensates in periodic potential. Phys. Rev E. 70, 56617 (2004)
Smirnov, A.: Elliptic soliton and Heun’s equation, The Kowalevski property. CRM Proc. Lecture Notes 32, 287–305 (2002)
Char, B.W., Geddes, K.O., Gonnet, G.H., Monagan, M.B., Watt, S.M.: Maple Reference Manual, Watcom Publications, Waterloo (1988)
Corless, R., Giesbrecht, M., van Hoeij, M., Kotsireas, I., Watt, S.: Towards factoring bivariate approximate polynomials, International Conference on Symbolic and Algebraic Computation. In: Proceedings of ISSAC 2001, ACM Press, New York (2001)
Gesztesy, F., Holden, H.: Soliton Equations and Their Algebro-Geometric Solutions. vol. I: (1 + 1)-Dimensional Continuous Models. Cambridge University Press, Cambridge (2003)
Gesztesy, F., Ratneseelan, R.: An alternative approach to algebro-geometric solutions of AKNS hierarchy. Rev. Math. Phys. 10, 345–391 (1998)
Brezhnev, Y.: Elliptic solitons and Gröbner bases. Journal of Mathematical Physics 45, 696–712 (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kostov, N.A., Kostova, Z.T. (2007). Exact Solutions of Completely Integrable Systems and Linear ODE’s Having Elliptic Function Coefficients. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2007. Lecture Notes in Computer Science, vol 4770. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75187-8_20
Download citation
DOI: https://doi.org/10.1007/978-3-540-75187-8_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75186-1
Online ISBN: 978-3-540-75187-8
eBook Packages: Computer ScienceComputer Science (R0)