Abstract
A database intrusion detection system (IDS) is a new database security mechanism to guard data, the most valuable assets of an organization. To provide the intrusion detection module with relevant audit data for further analysis, an effective data collection method is essential. Currently, very little work has been done on the data acquisition mechanisms tailored to the needs of database IDSs. Most researchers use the native database auditing functionality, which excludes privileged users such as database administrators (DBAs) from being monitored. In this paper, we present a new approach to data collection for database IDSs by situating data collecting sensors on the database server and having the data transmitted to the audit server on a physically different site for further processing. This approach can guarantee that behavior of both average users and privileged users are monitored for signs of intrusion.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Low, W.L., Lee, J., Teoh, P.: DIDAFIT: Detecting intrusions in databases through fingerprinting transactions. In: ICEIS, pp. 121–128 (2002)
Rietta, F.S.: Application layer intrusion detection for SQL injection. In: Menezes, R. (ed.) ACM Southeast Regional Conference, pp. 531–536. ACM Press, New York (2006)
Ramasubramanian, P., Kannan, A.: Intelligent multi-agent based database hybrid intrusion prevention system. In: Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.) ADBIS 2004. LNCS, vol. 3255, pp. 393–408. Springer, Heidelberg (2004)
Ramasubramanian, P., Kannan, A.: A genetic-algorithm based neural network short-term forecasting framework for database intrusion prediction system. Soft Comput. 10(8), 699–714 (2006)
Chung, C.Y., Gertz, M., Levitt, K.N.: DEMIDS: A misuse detection system for database systems. In: IICIS, pp. 159–178 (1999)
Lee, S.Y., Low, W.L., Wong, Y.: Learning fingerprints for a database intrusion detection system. In: Gollmann, D., Karjoth, G., Waidner, M. (eds.) ESORICS 2002. LNCS, vol. 2502, Springer, Heidelberg (2002)
Lee, V., Stankovic, J., Son, S.: Intrusion detection in real-time database systems via time signatures. In: Proceedings of the Sixth IEEE Real-Time Technology and Applications Symposium (RTAS 2000), Washington - Brussels - Tokyo, pp. 124–133. IEEE, Los Alamitos (2000)
Hu, Y., Panda, B.: Identification of malicious transactions in database systems. In: IDEAS, pp. 329–335. IEEE Computer Society Press, Los Alamitos (2003)
Hu, Y., Panda, B.: A data mining approach for database intrusion detection. In: Haddad, H., Omicini, A., Wainwright, R.L., Liebrock, L.M. (eds.) SAC, pp. 711–716. ACM Press, New York (2004)
Mattsson, U.T.: A real-time intrusion prevention system for commercial enterprise databases. In: Ascenso, J., Belo, C., Vasiu, L., Saramago, M., Coelhas, H. (eds.) ICETE, pp. 275–280. INSTICC Press (2004)
Valeur, F., Mutz, D., Vigna, G.: A learning-based approach to the detection of SQL attacks. In: Julisch, K., Krügel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 123–140. Springer, Heidelberg (2005)
Bertino, E., Kamra, A., Terzi, E., Vakali, A.: Intrusion detection in RBAC-administered databases. In: ACSAC, pp. 170–182. IEEE Computer Society Press, Los Alamitos (2005)
Spalka, A., Lehnhardt, J.: A comprehensive approach to anomaly detection in relational databases. In: Jajodia, S., Wijesekera, D. (eds.) Data and Applications Security XIX. LNCS, vol. 3654, pp. 207–221. Springer, Heidelberg (2005)
Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Hippocratic databases. In: VLDB, pp. 143–154. Morgan Kaufmann, San Francisco (2002)
Ryutov, T., Neuman, B.C., Kim, D., Zhou, L.: Integrated access control and intrusion detection for web servers. In: 23th International Conference on Distributed Computing Systems (23th ICDCS’2003). Providence, RI, pages 394-. IEEE Computer Society Press, Los Alamitos (2003)
Spitzner, L.: Honeypots: Catching the insider threat. In: ACSAC, pp. 170–181. IEEE Computer Society Press, Los Alamitos (2003)
Magklaras, G., Furnell, S.: Insider threat prediction tool: Evaluating the probability of IT misuse. Computers & Security 21(1), 62–73 (2002)
Heady, R., Luger, G., Maccabe, A., Servilla, M.: The architecture of a network level intrusion detection system. Technical report, University of New Mexico, Department of Computer Science (August 1990)
Ajith, S.P.: Intrusion detection systems using decision trees and support vector machines, URL: citeseer.ist.psu.edu/741190.html
Welz, M.G., Hutchison, A.: Interfacing trusted applications with intrusion detection systems. In: RAID 2000: Proceedings of the 4th International Symposium on Recent Advances in Intrusion Detection, pp. 37–53. Springer, London (2001)
Almgren, M., Lindqvist, U.: Application-integrated data collection for security monitoring. In: RAID 2000: Proceedings of the 4th International Symposium on Recent Advances in Intrusion Detection, pp. 22–36. Springer, London, UK (2001)
Zamboni, D.: Data collection mechanisms for intrusion detection systems. Technical report(05 March, 2000)
Nyanchama, M., Osborn, S.: The role graph model and conflict of interest. ACM Transactions on Information and System Security 2(1), 3–33 (1999)
Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access control models. IEEE Computer 20(2), 38–47 (1996)
Modrakovic, M.: Reading and storing data directly from Oracle SGA using ProC*/C code (2004), URL: http://www.petefinnigan.com/Storing_Data_Directly_From_Oracle_SGA.pdf
Mattsson, U.: A practical implementation of a real-time intrusion prevention system for commercial enterprise databases. In: WSEAS, Copacabana, Rio de Janeiro, Brazil (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jin, X., Osborn, S.L. (2007). Architecture for Data Collection in Database Intrusion Detection Systems. In: Jonker, W., Petković, M. (eds) Secure Data Management. SDM 2007. Lecture Notes in Computer Science, vol 4721. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75248-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-75248-6_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75247-9
Online ISBN: 978-3-540-75248-6
eBook Packages: Computer ScienceComputer Science (R0)