Abstract
Existing privacy regulations together with large amounts of available data have created a huge interest in data privacy research. A main research direction is built around the k-anonymity property. Several shortcomings of the k-anonymity model have been fixed by new privacy models such as p-sensitive k-anonymity, l-diversity, α, k-anonymity, and t-closeness. In this paper we introduce the EnhancedPKClustering algorithm for generating p-sensitive k-anonymous microdata based on frequency distribution of sensitive attribute values. The p-sensitive k-anonymity model and its enhancement, extended p-sensitive k-anonymity, are described, their properties are presented, and two diversity measures are introduced. Our experiments have shown that the proposed algorithm improves several cost measures over existing algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D., Zhu, A.: Anonymizing Tables. In: Proceedings of the ICDT, pp. 246–258 (2005)
Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Hippocratic Databases. In: Proceedings of the VLDB, pp. 143–154 (2002)
Bayardo, R.J, Agrawal, R.: Data Privacy through Optimal k-Anonymization. In: Proceedings of the IEEE ICDE, pp. 217–228. IEEE Computer Society Press, Los Alamitos (2005)
Byun, J.W., Kamra, A., Bertino, E., Li, N.: Efficient k-Anonymity using Clustering Technique. CERIAS Tech. Report 2006-10 (2006)
Campan, A., Truta, T.M.: Extended P-Sensitive K-Anonymity. Studia Universitatis Babes-Bolyai Informatica 51(2), 19–30 (2006)
Campan, A., Truta, T.M., Miller, J., Sinca, R.A.: Clustering Approach for Achieving Data Privacy. In: Proceedings of the International Data Mining Conference (2007)
HIPAA.: Health Insurance Portability and Accountability Act (2002), Available online at: http://www.hhs.gov/ocr/hipaa
ICD9.: International Classification of Diseases. Available online at: http://icd9cm.chrisendres.com/index.php
Iyengar, V.: Transforming Data to Satisfy Privacy Constraints. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 279–288. ACM Press, New York (2002)
Lambert, D.: Measures of Disclosure Risk and Harm. Journal of Official Statistics 9, 313–331 (1993)
LeFevre, K., DeWitt, D., Ramakrishnan, R.: Incognito: Efficient Full-Domain K-Anonymity. In: Proceedings of the ACM SIGMOD, pp. 49–60. ACM Press, New York (2005)
LeFevre, K., DeWitt, D., Ramakrishnan, R.: Mondrian Multidimensional K-Anonymity. In: Proceedings of the IEEE ICDE, vol. 25 (2006)
Li, N., Li, T., Venkatasubramanian, S.: T-Closeness: Privacy Beyond k-Anonymity and l-Diversity. In: Proceedings of the IEEE ICDE (2007)
Machanavajjhala, A., Gehrke, J., Kifer, D.: L-Diversity: Privacy beyond K-Anonymity. In: Proceedings of the IEEE ICDE, vol. 24 (2006)
Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases, UC Irvine (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html
Samarati, P.: Protecting Respondents Identities in Microdata Release. IEEE Transactions on Knowledge and Data Engineering 13(6), 1010–1027 (2001)
Sweeney, L.: k-Anonymity: A Model for Protecting Privacy. International Journal on Uncertainty, Fuzziness, and Knowledge-based Systems 10(5), 557–570 (2002)
Sweeney, L.: Achieving k-Anonymity Privacy Protection Using Generalization and Suppression. International Journal on Uncertainty, Fuzziness, and Knowledge-based Systems 10(5), 571–588 (2002)
Truta, T.M., Bindu, V.: Privacy Protection: P-Sensitive K-Anonymity Property. In: Proceedings of the Workshop on Privacy Data Management, In Conjunction with IEEE ICDE, vol. 94 (2006)
Truta, T.M., Campan, A.: K-Anonymization Incremental Maintenance and Optimization Techniques. In: Proceedings of the ACM SAC, pp. 380–387. ACM Press, New York (2007)
Winkler, W.: Matching and Record Linkage. In: Business Survey Methods, Wiley, Chichester (1995)
Wong, R.C-W., Li, J., Fu, A.W-C., Wang, K.: (α, k)-Anonymity: An Enhanced k-Anonymity Model for Privacy-Preserving Data Publishing. In: Proceedings of the ACM KDD, pp. 754–759. ACM Press, New York (2006)
Xiao, X., Tao, Y.: Personalized Privacy Preservation. In: Proceedings of the ACM SIGMOD, pp. 229–240. ACM Press, New York (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Truta, T.M., Campan, A., Meyer, P. (2007). Generating Microdata with P-Sensitive K-Anonymity Property. In: Jonker, W., Petković, M. (eds) Secure Data Management. SDM 2007. Lecture Notes in Computer Science, vol 4721. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75248-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-75248-6_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75247-9
Online ISBN: 978-3-540-75248-6
eBook Packages: Computer ScienceComputer Science (R0)