Skip to main content

Generating Microdata with P-Sensitive K-Anonymity Property

  • Conference paper
Secure Data Management (SDM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4721))

Included in the following conference series:

Abstract

Existing privacy regulations together with large amounts of available data have created a huge interest in data privacy research. A main research direction is built around the k-anonymity property. Several shortcomings of the k-anonymity model have been fixed by new privacy models such as p-sensitive k-anonymity, l-diversity, α, k-anonymity, and t-closeness. In this paper we introduce the EnhancedPKClustering algorithm for generating p-sensitive k-anonymous microdata based on frequency distribution of sensitive attribute values. The p-sensitive k-anonymity model and its enhancement, extended p-sensitive k-anonymity, are described, their properties are presented, and two diversity measures are introduced. Our experiments have shown that the proposed algorithm improves several cost measures over existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D., Zhu, A.: Anonymizing Tables. In: Proceedings of the ICDT, pp. 246–258 (2005)

    Google Scholar 

  2. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Hippocratic Databases. In: Proceedings of the VLDB, pp. 143–154 (2002)

    Google Scholar 

  3. Bayardo, R.J, Agrawal, R.: Data Privacy through Optimal k-Anonymization. In: Proceedings of the IEEE ICDE, pp. 217–228. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  4. Byun, J.W., Kamra, A., Bertino, E., Li, N.: Efficient k-Anonymity using Clustering Technique. CERIAS Tech. Report 2006-10 (2006)

    Google Scholar 

  5. Campan, A., Truta, T.M.: Extended P-Sensitive K-Anonymity. Studia Universitatis Babes-Bolyai Informatica 51(2), 19–30 (2006)

    MATH  Google Scholar 

  6. Campan, A., Truta, T.M., Miller, J., Sinca, R.A.: Clustering Approach for Achieving Data Privacy. In: Proceedings of the International Data Mining Conference (2007)

    Google Scholar 

  7. HIPAA.: Health Insurance Portability and Accountability Act (2002), Available online at: http://www.hhs.gov/ocr/hipaa

  8. ICD9.: International Classification of Diseases. Available online at: http://icd9cm.chrisendres.com/index.php

  9. Iyengar, V.: Transforming Data to Satisfy Privacy Constraints. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 279–288. ACM Press, New York (2002)

    Google Scholar 

  10. Lambert, D.: Measures of Disclosure Risk and Harm. Journal of Official Statistics 9, 313–331 (1993)

    Google Scholar 

  11. LeFevre, K., DeWitt, D., Ramakrishnan, R.: Incognito: Efficient Full-Domain K-Anonymity. In: Proceedings of the ACM SIGMOD, pp. 49–60. ACM Press, New York (2005)

    Google Scholar 

  12. LeFevre, K., DeWitt, D., Ramakrishnan, R.: Mondrian Multidimensional K-Anonymity. In: Proceedings of the IEEE ICDE, vol. 25 (2006)

    Google Scholar 

  13. Li, N., Li, T., Venkatasubramanian, S.: T-Closeness: Privacy Beyond k-Anonymity and l-Diversity. In: Proceedings of the IEEE ICDE (2007)

    Google Scholar 

  14. Machanavajjhala, A., Gehrke, J., Kifer, D.: L-Diversity: Privacy beyond K-Anonymity. In: Proceedings of the IEEE ICDE, vol. 24 (2006)

    Google Scholar 

  15. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases, UC Irvine (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  16. Samarati, P.: Protecting Respondents Identities in Microdata Release. IEEE Transactions on Knowledge and Data Engineering 13(6), 1010–1027 (2001)

    Article  Google Scholar 

  17. Sweeney, L.: k-Anonymity: A Model for Protecting Privacy. International Journal on Uncertainty, Fuzziness, and Knowledge-based Systems 10(5), 557–570 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sweeney, L.: Achieving k-Anonymity Privacy Protection Using Generalization and Suppression. International Journal on Uncertainty, Fuzziness, and Knowledge-based Systems 10(5), 571–588 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Truta, T.M., Bindu, V.: Privacy Protection: P-Sensitive K-Anonymity Property. In: Proceedings of the Workshop on Privacy Data Management, In Conjunction with IEEE ICDE, vol. 94 (2006)

    Google Scholar 

  20. Truta, T.M., Campan, A.: K-Anonymization Incremental Maintenance and Optimization Techniques. In: Proceedings of the ACM SAC, pp. 380–387. ACM Press, New York (2007)

    Google Scholar 

  21. Winkler, W.: Matching and Record Linkage. In: Business Survey Methods, Wiley, Chichester (1995)

    Google Scholar 

  22. Wong, R.C-W., Li, J., Fu, A.W-C., Wang, K.: (α, k)-Anonymity: An Enhanced k-Anonymity Model for Privacy-Preserving Data Publishing. In: Proceedings of the ACM KDD, pp. 754–759. ACM Press, New York (2006)

    Google Scholar 

  23. Xiao, X., Tao, Y.: Personalized Privacy Preservation. In: Proceedings of the ACM SIGMOD, pp. 229–240. ACM Press, New York (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Willem Jonker Milan Petković

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Truta, T.M., Campan, A., Meyer, P. (2007). Generating Microdata with P-Sensitive K-Anonymity Property. In: Jonker, W., Petković, M. (eds) Secure Data Management. SDM 2007. Lecture Notes in Computer Science, vol 4721. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75248-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75248-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75247-9

  • Online ISBN: 978-3-540-75248-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics