Skip to main content

Weak Implication in Terms of Conditional Uncertainty Measures

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2007)

Abstract

We define weak implication \(H \longmapsto_{\varphi} E\) (“H weakly implies E under \(\mathit{\varphi}\)”) through the relation \(\mathit{\varphi}(E|H)\) = 1, where \(\mathit{\varphi}\) is a (coherent) conditional uncertainty measure. By considering various such measures with different levels of generality, we get different sets of “inferential rules”, that correspond to those of default logic when \(\mathit{\varphi}\) reduces to a conditional probability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bouchon-Meunier, B., Coletti, G., Marsala, C.: Independence and Possibilistic Conditioning. Annals of Mathematics and Artificial Intelligence 35, 107–124 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Coletti, G.: Coherent numerical and ordinal probabilistic assessments. IEEE Transactionson Systems, Man, and Cybernetics 24, 1747–1754 (1994)

    Article  MathSciNet  Google Scholar 

  3. Coletti, G., Mastroleo, M.: Conditional belief functions: a comparison among different definitions. In: Proc. of WUPES 2006, Mikulov, Czech Rep., pp. 24–35 (2006)

    Google Scholar 

  4. Coletti, G., Scozzafava, R.: Characterization of coherent conditional probabilitiesas a tool for their assessment and extension. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 4, 103–127 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coletti, G., Scozzafava, R.: From conditional events to conditional measures: a newaxiomatic approach. Annals of Mathematics and Artificial Intelligence 32, 373–392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coletti, G., Scozzafava, R.: Probabilistic logic in a coherent setting. In: Trends inlogic, vol. 15. Kluwer, Dordrecht (2002)

    Google Scholar 

  7. Coletti, G., Scozzafava, R.: Toward a general theory of conditional beliefs. International Journal of Intellgent Systems 21, 229–259 (2006)

    Article  MATH  Google Scholar 

  8. Coletti, G., Scozzafava, R., Vantaggi, B.: Coherent conditional probability as a toolfor default reasoning. In: Bouchon-Meunier, B., Foulloy, L., Yager, R.R. (eds.) IntelligentSystems for Information Processing: from Representation to Applications, pp. 191–202. Elsevier, Amsterdam (2003)

    Chapter  Google Scholar 

  9. Coletti, G., Vantaggi, B.: Possibility theory: conditional independence. Fuzzy Sets and Systems 157, 1491–1513 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coletti, G., Vantaggi, B.: Representability of ordinal relations on a set of conditional events. Theory and Decision 60, 137–174 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. de Finetti, B.: Sull’impostazione assiomatica del calcolo delle probabilità. Annali. Univ. Trieste 19, 3–55 (1949) (Engl. transl.: Probability, Induction, Statistics, ch.5. Wiley, London (1972))

    MATH  Google Scholar 

  12. Ferracuti, L., Vantaggi, B.: Independence and conditional possibilities for strictlymonotone triangular norms. International Journal of Intelligent Systems 21(3), 299–323 (2006)

    Article  MATH  Google Scholar 

  13. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artificial Intelligence 55, 1–60 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Paneni, T., Scozzafava, R.: Multi-valued conditional events avoid Lewis’ trivialityresult. In: Nielsen, T.D., Zhang, N.L. (eds.) ECSQARU 2003. LNCS (LNAI), vol. 2711, pp. 432–439. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Reiter, R.: A Logic for Default Reasoning. Artificial Intelligence 13, 81–132 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Russel, S.J., Norvig, P.: Artificial Intelligence, a Modern Approach. Prentice-Hall, New Jersey (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coletti, G., Scozzafava, R., Vantaggi, B. (2007). Weak Implication in Terms of Conditional Uncertainty Measures. In: Mellouli, K. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2007. Lecture Notes in Computer Science(), vol 4724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75256-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75256-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75255-4

  • Online ISBN: 978-3-540-75256-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics