Skip to main content

On Decision Support Under Risk by the WOWA Optimization

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4724))

Abstract

The problem of averaging outcomes under several scenarios to form overall objective functions is of considerable importance in decision support under uncertainty. The fuzzy operator defined as the so-called Weighted OWA (WOWA) aggregation offers a well-suited approach to this problem. The WOWA aggregation, similar to the classical ordered weighted averaging (OWA), uses the preferential weights assigned to the ordered values (i.e. to the worst value, the second worst and so on) rather than to the specific criteria. This allows one to model various preferences with respect to the risk. Simultaneously, importance weighting of scenarios can be introduced. In this paper we analyze solution procedures for optimization problems with the WOWA objective function. A linear programming formulation is introduced for optimization of the WOWA objective with monotonic preferential weights. Its computational efficiency is analyzed.

The research was supported by the Ministry of Science and Information Society Technologies under grant 3T11C 005 27 “Models and Algorithms for Efficient and Fair Resource Allocation in Complex Systems.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Damiani, E., De Capitani di Vimercati, S., Samarati, P., Viviani, M.: A WOWAbased aggregation technique on trust values connected to metadata. Electronic Notes Theor. Comp. Sci. 157, 131–142 (2006)

    Article  Google Scholar 

  2. Glover, F., Klingman, D.: The simplex SON method for LP/embedded network problems. Math. Progr. Study 15, 148–176 (1981)

    Article  MATH  Google Scholar 

  3. Grabisch, M., Orlovski, S.A., Yager, R.R.: Fuzzy aggregation of numerical preferences. In: Fuzzy sets in decision analysis, operations research and statistics, pp. 31–68. Kluwer, Dordrecht (1999)

    Google Scholar 

  4. Liu, X.: Some properties of the weighted OWA operator. Man and Cyber. B 368, 118–127 (2006)

    Google Scholar 

  5. Mansini, R., Ogryczak, W., Speranza, M.G.: Conditional Value at Risk and Related Linear Programming Models for Portfolio Optimization. Annals of Oper. Res. 152, 227–256 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ogryczak, W.: Multiple criteria linear programming model for portfolio selection. Annals Oper. Res. 97, 143–162 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ogryczak, W.: Multiple criteria optimization and decisions under risk. Control & Cyber. 31, 975–1003 (2002)

    MATH  Google Scholar 

  8. Ogryczak, W., Ruszczyński, A.: Dual stochastic dominance and related mean-risk models. SIAM J. Optimization 13, 60–78 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ogryczak, W., Śliwiński, T.: On equitable approaches to resource allocation problems: the conditional minimax solution. J. Telecom. Info. Tech. 3(02), 40–48 (2002)

    Google Scholar 

  10. Ogryczak, W., Śliwiński, T.: On solving linear programs with the ordered weighted averaging objective. Eur. J. Opnl. Res. 148, 80–91 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ogryczak, W., Zawadzki, M.: Conditional Median – A Parametric Solution Concept for Location Problems. Annals of Oper. Res. 110, 167–181 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Torra, V.: The weighted OWA operator. Int. J. Intell. Syst. 12, 153–166 (1997)

    Article  MATH  Google Scholar 

  13. Torra, V.: The WOWA operator and the interpolation function W*: Chen and Otto’s interpolation method revisited. Fuzzy Sets Syst. 113, 389–396 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Valls, A., Torra, V.: Using classification as an aggregation tool for MCDM. Fuzzy Sets Syst. 115, 159–168 (2000)

    Article  Google Scholar 

  15. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Systems, Man and Cyber. 18, 183–190 (1988)

    Article  MATH  Google Scholar 

  16. Yager, R.R.: Constrained OWA aggregation. Fuzzy Sets Syst. 81, 89–101 (1996)

    Article  MathSciNet  Google Scholar 

  17. Yager, R.R.: Quantifier guided aggregation using OWA operators. Int. J. Intell. Syst. 11, 49–73 (1996)

    Article  Google Scholar 

  18. Yager, R.R., Filev, D.P.: Essentials of Fuzzy Modeling and Control. Wiley, New York (1994)

    Google Scholar 

  19. Yager, R.R., Kacprzyk, J.: The Ordered Weighted Averaging Operators: Theory and Applications. Kluwer, Dordrecht (1997)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ogryczak, W., Śliwiński, T. (2007). On Decision Support Under Risk by the WOWA Optimization. In: Mellouli, K. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2007. Lecture Notes in Computer Science(), vol 4724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75256-1_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75256-1_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75255-4

  • Online ISBN: 978-3-540-75256-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics